Social Context and the Evolution of Empathy

Abstract

Human societies differ in the social context of their economic interactions: whereas hunter-
gatherers depend primarily on familiars for their subsistence, people in market societies depend
primarily on strangers. This variation raises a critical question: How does social context
influence the evolution and behavioral expression of empathy? Experimental evidence
consistently shows that empathy increases with social closeness. Using evolutionary game
theory, I examine how empathy evolves in various social-economic ecologies. I situate the
evolutionary game on a network with distinct social and economic layers (where strategy
transmission and game interactions occur, respectively), and I define empathy as cooperating
conditional on social proximity. The numerical and analytical results reveal that when
interactions occur among both familiars and strangers, discriminatory empathy outperforms
unconditional cooperation, but when interactions occur only among strangers, empathy produces
no cooperation. Using pair approximation, I show that empathy is selected for when the gains
from cooperation (b/c) exceed the degree of the social network (s). This pattern parallels
Hamilton’s rule, with 1/s corresponding to the relatedness coefficient. Broadly, the results
illustrate that if behaviors spread among familiars, familiarity serves as a proxy for behavioral
relatedness; in this way, conditioning cooperation on familiarity concentrates the benefits of
cooperation among cooperators, allowing this behavior to persist and spread. These findings
highlight the behavioral consequences of modern human ecologies characterized by anonymity
and provide insights for designing institutions and structuring human ecologies that better foster

cooperation.
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1. Introduction
We are a social species. Our aptitude for cooperation and social learning has enabled us to adapt

to a wide variety of ecosystems and organize into diverse sociocultural configurations. This array



of human ecologies gives rise to cooperation problems that range in scale and scope from
mammoth hunts to climate change. Simultaneously, human ecology shapes the evolution and
expression of cooperative behaviors such as empathy. In this paper, ecology refers to the pattern
of relationships between individuals and their environments (Gonzalez & Rice, 2024),
cooperation refers to any action that is individually costly but collectively beneficial (Rand &
Nowak, 2013), and empathy refers to an internal state that motivates cooperative action
contingent on social proximity (Davis, 2015). The social context of economic interactions
constitutes an important dimension of human ecology that varies across different societies.
Whereas hunter-gatherers know most of those whom they depend upon for subsistence, the
constituents of market societies depend primarily on strangers. In this paper, I explore the effects

of social context on the evolution and behavioral expression of empathy.

Empirical evidence indicates that cooperation increases with the sociality of the interaction
context. Game theoretic experiments have demonstrated this effect by manipulating social
context in various ways. Reducing anonymity by identifying subjects by name or photograph or
by conducting the game in a face-to-face setting tends to promote cooperation (Ariely et al.,
2009; Bohnet & Frey, 1999; Burnham, 2003; Charness & Gneezy, 2008; Choi & Storr, 2020; de
Oliveira et al., 2014; Frey & Bohnet, 1997; Krysowski & Tremewan, 2021; Leider et al., 2008;
Ligon & Schechter, 2012; List et al., 2004; Rankin, 2006; Rege & Telle, 2004; Schram &
Charness, 2015), and so does permitting discussion among subjects before the game (Andreoni
& Rao, 2011; Batson & Ahmad, 2001; Batson & Moran, 1999; Bochet et al., 2006; Frey &
Bohnet, 1997; Ostrom & Walker, 1997; Sally, 1995). Revealing the group identities of subjects
tends to prompt in-group cooperation (Bicchieri et al., 2022; Glaeser et al., 2000; Habyarimana
et al., 2007; Howe et al., 2023). Most notably, in non-anonymous games, social distance between
interaction partners in their real-world social networks correlates negatively with cooperation
(Apicella et al., 2012; Branas-Garza et al., 2010; Chandrasekhar et al., 2018; Goeree et al., 2010;
Leider et al., 2008). Similarly, questionnaires of hypothetical choices suggest that cooperation
increases with subjective relational closeness (Jones, 2022; Jones & Rachlin, 2009; Jones &
Rachlin, 2006; Kardos et al., 2023.; Locey et al., 2011, 2013; Osinski, 2009; Rachlin & Jones,
2008; Vekaria et al., 2017).



Psychologists also expound the importance of relational context in understanding cooperative
behavior (Clark et al., 2015; Kardos et al., 2023), especially in the literature on empathy.
Although empathy has been defined in a number of ways (Batson, 2009; Davis, 2015), the
concept generally refers to a cognitive, affective, and/or behavioral response of one individual to
the state of another (Davis, 2015; de Waal & Preston, 2017). Empathic responses are mediated
by psychological and social context (Cialdini et al., 1997; Davis, 2015; Hoffman, 2008; Preston
& Waal, 2002; Singer & Lamm, 2009; Singer & Tusche, 2014). Namely, empathy increases with
familiarity, similarity, past experience, and salience (de Waal, 2009; de Waal & Preston, 2017;
Hoffman, 2008; Loewenstein & Small, 2007; Preston & Waal, 2002; Singer & Tusche, 2014).
These effects of “psychological distance” (Davis, 2015) or “relationship closeness” (Cialdini et
al., 1997) encapsulate the general observation that the strongest empathic responses occur
between close friends or family and the weakest between out-group strangers (Davis, 2015). The
internal cognitive and affective aspects are often associated with cooperative behavior (Batson et
al., 1981; Batson, 2009, 2010; Batson & Ahmad, 2001; Batson & Moran, 1999; Cialdini et al.,
1997; Davis, 2015; de Waal, 2009; de Waal, 2008; de Waal & Preston, 2017; Hoffman, 2008;
Kamas & Preston, 2021; Preston & Waal, 2002; Rumble et al., 2010; Singer & Lamm, 2009). In
game theoretic experiments, encouraging perspective-taking in the game instructions increases
cooperation (Andreoni & Rao, 2011; Batson & Ahmad, 2001; Batson & Moran, 1999, p. 199; E.
Hoffman et al., 2000; Rumble et al., 2010). Measures of dispositional empathy sometimes
correlate with cooperation (Edele et al., 2013; Kamas & Preston, 2021; Takagishi et al., 2010),
and sometimes do not (Artinger et al., 2014; Biichner et al., 2007; de Oliveira et al., 2014; Edele
et al., 2013; Pelligra, 2011; Sautter et al., 2007), but notably, all those experiments that did not

demonstrate an effect were conducted in anonymous settings.

These experimental findings suggest we are more prone to empathize and cooperate in situations
that are more saliently social and with individuals who are socially closer to us. How might this
strategy of cooperating conditional on social proximity have evolved? And how does the social

context of interactions influence its evolution?

Whereas situational effects of sociality on cooperation are readily observable in experimental
settings, evolutionary effects are not. Evolutionary game theory provides a framework for

analyzing evolutionary dynamics by modelling the persistence and spread of behavioral



strategies in a population as a function of the relative payoffs the strategies yield in
intrapopulation game interactions. The human behavioral repertoire (including cooperation) is a
product of interacting genetic and cultural evolution (Boyd & Richerson, 1988, 2005; Henrich &
Muthukrishna, 2021). Genes persist and spread via survival and reproduction of the carrier.
Cultural traits spread via social learning. Given the long history of misuse and misinterpretation
of evolutionary concepts applied to humans (Gonzalez & Rice, 2024), it is important to
distinguish between explanation and justification: evolution is not synonymous with progress nor

is fitness synonymous with desirability.

Cooperation poses an evolutionary puzzle given the separation of the actor from the benefits of
their action. If individuals interact randomly with each other and employ unconditional strategies
(always cooperate or never cooperate), those who never cooperate inevitably accumulate a
higher payoff than those who always cooperate. Cooperation can only evolve if the benefits of
cooperation are sufficiently concentrated among cooperators, such that the average cooperation
benefits received by cooperators exceed the cooperation costs they pay. This logic applies to both
cultural and genetic evolution and can thus produce both learned and innate cooperative traits.
Hamilton’s rule expresses this logic in mathematical form: rb > ¢, where b and c represent,
respectively, the benefits and costs of cooperation and 7, the relatedness coefficient, represents
the proportion of cooperation benefits received by cooperators (Bowles & Gintis, 2011;
Hamilton, 1964; Henrich, 2018; Smaldino, 2023). This concentration of benefits among
cooperators can occur through assortment due to the coincidence of behavioral transmission and
interaction ecologies as in the cases of kin selection (Hamilton, 1964), group selection (Bowles
& Gintis, 2011), and static networks (Rand et al., 2014), or it can arise through conditional
behavior as in the cases of direct and indirect reciprocity (Nowak & Sigmund, 2005; Schmid et
al., 2021; Trivers, 1971), parochial altruism (Bowles & Gintis, 2011), altruistic punishment
(Boyd & Richerson, 2005), and choice of interaction partners (which results in assortment)
(Rand et al., 2011). These evolutionary mechanisms may manifest in a variety of proximate
behavioral motives including social emotions (Batson, 2010; Bowles & Gintis, 2011; Davis,
2015; de Waal & Preston, 2017; Hoffman, 2008) and internalized or externally enforced social
and moral norms (Akg¢ay & Van Cleve, 2021; Bowles & Gintis, 2011; Boyd & Richerson, 2005;
Ohtsuki & Iwasa, 2006; Ostrom, 2000).



Models of evolutionary games situated on networks illuminate the effects of population structure
on the evolution of cooperation (e.g. Allen et al., 2017; Débarre et al., 2014; Lieberman et al.,
2005; Nowak et al., 2010; Nowak & May, 1992; Ohtsuki et al., 2006; Sheng et al., 2024; Su et
al., 2019, 2022, 2023; Su & Stewart, 2025). A seminal paper by Ohtsuki, Hauert, Lieberman, and
Nowak (2006) demonstrates that, in the case of a single-layer network where both game
interactions and strategy transmission occur, unconditional cooperation can persist and spread if
the gains from cooperation are larger than the number of interaction and transmission neighbors.
The network structure results in strategy assortment, thereby promoting the evolution of
cooperation. A number of subsequent studies have shown that separating the loci of strategy
transmission and game interactions can undermine the evolution of unconditional cooperation by
lessening the assortment of strategies (Allen & Nowak, 2014; Dong et al., 2023; Ohtsuki et al.,
2007; Su et al., 2019). Since genetic transmission occurs between kin and cultural transmission
(social learning) occurs among both kith and kin, the transmission network might best be thought
of as a network of kith and kin—i.e. a social network. This, in turn, suggests that unconditional
cooperation can evolve only when the interaction context is highly social. But what if

cooperation is conditioned on social proximity?

To explore the effect of social context on the evolution of empathy, I develop a model consisting
of an evolutionary game situated on a network with distinct social and economic layers (Fig. 1,
2). The game interactions occur on the economic layer, and the strategy transmission occurs on
the social layer. In this way, I can vary the social context of the evolutionary game by varying the
social-economic overlap of the network. I define empathy as the strategy of cooperating with
those within a certain range in a social network and defecting against everyone further away.
While several others have operationalized empathy in a utility function or as a game theoretic
strategy (Binmore, 2005; Grohn et al., 2014), the social distance conditionality is novel. Each of
the situational and relational mediating factors associated with increased empathy in the
psychology literature (Preston & Waal, 2002) can be related to proximity in a social network:
familiarity by the definition of a social relation, similarity due to network homophily
(McPherson et al., 2001), past experience from durable social relationships, and salience in the
context of face-to-face interactions. To analyze the evolutionary viability and stability of

empathy, I estimate fixation probabilities numerically by running simulations of the evolutionary



game model, and I employ a novel method involving pair approximation (Baalen, 2000; Ohtsuki

et al., 2006, 2007) to obtain an analytical rule for the evolution of empathy.

2. Model

The model I develop consists of a prisoner’s dilemma game, the competing strategies for playing
the game, the fitness function dictating how strategies spread, and the multilayer network on
which the evolutionary game dynamics occur. I run evolutionary game simulations and apply a
technique called pair approximation to derive numerical and analytical results describing the

impact of social context on the evolution of empathy.

The two-layer network structures the interactions among the population of N nodes. The game
occurs on the economic layer (G), and the strategy updating occurs on the social layer (S). The
overlap network (O) is obtained from the intersection of the edge sets of G and S. The economic,
social, and overlap networks are all regular degree: Every node has g economic neighbors and s
social neighbors, o of which are both social and economic neighbors. (The term “regular” refers
to the constant number of neighbors or “degree”.) The sociality of the interaction context is
represented by the overlap degree divided by the economic degree o/g, which indicates the
proportion of interactions which occur among familiars. To generate a random regular multilayer
network from the set of all possible regular multilayer networks given the parameters N, g, s, and
o, I construct a circulant network of degree g + s — o, partition the edges into (G' — 0"), (§' —
0"), and O'; stochastically rewire the edges of each partitioned edge set, G — 0 = R(G' — 0"),
S—0=R(S'"=0"),and O = R(0"); and reconstruct G = (G —0) + O and S = (S — 0) + 0.
Figure 1 illustrates this network generation algorithm, which I developed by modifying the
Watts-Strogatz model (Watts & Strogatz, 1998). A detailed description can be found in Appendix
A.
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Fig. 1. Generating a multilayer network. The evolutionary game takes place on a random regular N-node
multilayer network with distinct social and economic layers. Both layers are random regular networks, and
the intersection of the layers is also a random regular network, so every node has the same number of
economic neighbors (g), the same number of social neighbors (s), and the same number of social-economic
neighbors (0). The random regular multilayer networks used in the simulations are constructed by
partitioning and rewiring circulant networks. a.—h. depict the rewiring of the circulant union network, S U
G = R(S' U G"), and each of its partitioned subsets: S — 0 = R(S'—0'), G —0 =R(G' —0"),and 0 =
R(0") (N=20, g =s =4, 0=2). . depicts the social layer obtained from § = (§ — 0) + O (i.e. from the
union of f. and h.). j. depicts the economic layer obtained from G = (G — 0) + O (i.e. from the union of g.
and h.). k. depicts an example of a multilayer network used in the actual simulations (N =200,g =5 =38, 0
= 4) with the edges of S — 0, G — 0, and O colored blue, yellow, and green, respectively.

The nodes of this network interact and update their strategies in a series of rounds. During each
round, every node plays a one-shot game with each of their economic neighbors. In these games,
each player chooses to either cooperate or defect (Fig. 2). The act of cooperation consists of

paying a cost ¢ to convey a benefit b to the other player, where ¢ > 0 and b > c. The act of



defection is costless and conveys no benefit to the other. The game defined by these actions and

payoffs is an example of a prisoner’s dilemma.
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Fig. 2. Game payoffs. Each round, every node plays a one-shot prisoner’s dilemma with each of its
economic neighbors, accumulating payoffs according to the payoff matrix shown. b and ¢ denote the
benefits and costs of cooperation, respectively.

Each node plays the game according to their inherited or learned behavioral strategy. This
strategy is defined by an empathic range variable, x; € N, which indicates that node i will
cooperate with every economic neighbor who is x; or fewer social edges away and defect against
all others. In other words, i will cooperate with j if and only if d; ; < x;, where d; ; is the
distance between i and j in the social layer of the multilayer network. If x; = 0, node i defects
unconditionally. If x; > diameter(S), node i cooperates unconditionally. If x; €

(0, diameter(S )), node i cooperates conditional on social proximity. Throughout this paper, I
refer to these three types as defectors, unconditional cooperators, and empathizers, respectively.
Note that empathizers who cooperate only with social neighbors (x; = 1) behave identically to
unconditional cooperators in the context of full sociality (0/g = 1) but behave identically to
defectors in the absence of sociality (0/g = 0). The prevalence of cooperation in a population of
empathizers thus depends directly on the sociality of the interaction context. I demonstrate in
Appendix B how this behavioral strategy defined by x; can be obtained from a utility function

with an other-regarding component that decays with social distance.



Each round, each node, i, accumulates a total payoff from the games played with their economic

neighbors:

I, = z Tim 1)
meN;(G)
N;(G) denotes the set of economic neighbors of i. The fitness of node i (i.e. i’s propensity to

spread its behavioral strategy) is then calculated from this total payoff according to the following

equation (Ohtsuki et al., 2006, 2007):
fi=1l—-w+w-II; (2)

where w € [0,1] is the strength of selection. This parameter specifies the importance of payoffs
in the updating dynamic. When w = 0, strategies spread according to neutral drift (i.e. they
spread stochastically and independently from payoffs); when w = 1, strategies spread according

to the relative size of the payoffs reaped by the strategy-bearing nodes.

Each round, after all games have been played, one node is selected randomly from the population
to update their strategy by emulating one of their social neighbors. This updating mechanism is
called the death-birth rule (Ohtsuki et al., 2007). The updating node, i, adopts the strategy of any

one of their social neighbors, j, with a probability proportionate to j’s relative fitness:

fi

ZmeNi(S) fm (3)

P(i emulates j) =

where N;(S) is the set of social neighbors of i.

I analyze the evolutionary properties of cooperation in this model by employing two different
approaches, one numerical and the other analytical. For the first, I run simulations to estimate
fixation probabilities (the probability of a single invading strategies spreading to the entire
population). For the second, I apply the technique of pair approximation to derive an analytical

rule describing the game and network conditions under which cooperation can spread.



3. Results

3.1. Numerical results

Simulations begin with a population containing multiple strategies and run until one of the
strategies has fixated (i.e. eliminated its competitor(s)). The fixation probability of a strategy is
estimated based on the proportion of 8000 simulations which end with that strategy fixating. I
focus primarily on the case of invasion, where one “mutant” is introduced into a homogeneous
population (Fig. 3a, 3b, 4a-d). [ am interested not only in the conditions under which cooperators
might invade a population of defectors (viability) but also the conditions under which a
population of cooperators might fend of invading defectors (stability). Both cooperative and non-
cooperative equilibria can be found in any society, so understanding how cooperation is
maintained is just as important as understanding how it is initially fostered. And as the results
show (Fig. 3, 4), viability and stability are not symmetric since cooperators rely on assortment

for their fitness advantage.

To run one of these simulations, I must specify network parameters, N, g, s, and o, game
parameters, b and ¢, and the selection strength, w. I limit the N to 200 and g and s to 8 in my
main numerical analysis (Fig. 4), and my analytical results suggest little generality is lost in this
specification. I vary the overlap degree, o, from 0 to 8 by steps of 2 to analyze the evolutionary
dynamics under various social contexts. (The step size is constrained by the network generation
algorithm.) I vary the relative gains from cooperation, b/c, around a median value of 8 to
capture the interactive effects of network structure and game payoffs on the evolutionary
dynamics. Earlier findings by Ohtsuki et al. (2006, 2007) as well as my own numerical and
analytical results suggest that the boundary of the evolutionary feasibility of cooperation lies in
this region of the game-network parameter space (where b/c is close to g and s). [ vary b/c by
varying b and holding ¢ constant at ¢ = 1. Multiplying both b and ¢ by a scalar alters the payoff
of every outcome by the same factor. Scaling the payoffs up or down in this manner is equivalent
to altering the strength of selection (w). I conduct my primary analyses under conditions of weak
selection (w = 0.1) in accordance with much of the theoretical literature on the evolution of
cooperation on networks (Allen et al., 2017; Allen & Nowak, 2014; Dong et al., 2023; Ohtsuki et
al., 2006, 2007; Tarnita et al., 2009). In Appendix C, I discuss selection strength more

extensively and analyze its impact on the evolution of cooperation (see Figures C.1 and C.2).
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The fixation probability estimates of the evolutionary game simulations indicate that whereas
unconditional cooperation relies on a highly social interaction context to evolve, empathy
(cooperation conditional on social proximity) can persist and spread when this sociality is low as
long as the relative gains from cooperation are sufficiently large (Fig. 4). In other words, the
numerical results suggest that conditioning cooperation on social proximity is adaptive when

interactions occur among both familiars and strangers.

A strategy is selected for if its fixation probability is larger than that of a neutral mutant (1/N).
In Figures 3 and 4, fixation probability estimates for invading cooperators larger than (smaller
than) 1/N are colored blue (red). Similarly, fixation probability estimates for resident
cooperators larger than (smaller than) 1 — (1/N) are colored blue (red). Thus, blue (red) cells
indicate game and network conditions under which cooperation is selected for (against). Note
that in the absence of sociality (o = 0), empathizers are no different from defectors, so their
fixation probability estimates hover around those of neutral mutants, and in the context of full
sociality (o = g), empathizers are no different than unconditional cooperators, so their fixation

probability estimates align.

Figures 3a and 3b report the fixation probability estimates for empathizers with different
empathic ranges (x = 1, 2, 3, 4, 5) competing against defectors in the context of partial sociality
(o/g = 0.5) when the gains from cooperation are slightly larger than the social and economic
degrees (b/c = 6 > g = s = 4). These conditions select for all empathy variants with x < 3.
More generally, fitness decreases with empathic range. Figure 3¢ reports the fixation probability
estimates for simulations run under the same game and network conditions but starting from a
uniform distribution of all seven strategies from x = 0 (defectors) to x = 6 (unconditional
cooperators. In this environment of many competing strategies, as in the case of a single

competing strategy, discriminatory empathizers (x = 1, 2) are selected for.
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Fig. 3. The evolutionary advantage of conditioning cooperation on social proximity. N=100,g=s=4,0 =
2,w=0.1,b=06, c=1, 8000 simulations per estimate. In the case of partial sociality (o/g = 0.5),
evolutionary game simulations suggest that conditioning cooperation on social proximity is adaptive.
Fitness appears to decrease with empathic range. a, The fixation probability estimates for empathizers with
different ranges introduced into a population of defectors (viability). b, The fixation probability estimates
for resident empathizers with different ranges fending off invading defectors (stability). Empathizers with a
range of | cooperate only with social neighbors whereas empathizers with a range of 5 cooperate with
almost everyone. If a cell is blue (red), the empathizers are selected for (against). ¢, The fixation probability
estimates for empathizers with ranges 0 (defectors) through 6 (unconditional cooperators) starting from a
uniform distribution of all seven strategies, x;~U(0,6). Strategies with fixation probabilities above (below)
the red line—marking the fixation probability of a neutral mutant—are selected for (against).

Figure 4 reports the fixation probability estimates for unconditional cooperators (x =
diameter(S)) and empathizers (x = 1) competing against defectors under various conditions of
sociality and gains from cooperation. The fitness of unconditional cooperators increases with
gains from cooperation as well as sociality. Empathizer fitness increases with gains from
cooperation, but its relation to social context is more complex. In the context of partial sociality
(0/g > 0) and when the gains from cooperation exceed the degrees of the social and economic
layers (b/c > 8 = s = g), empathizers are selected for (viability fixation probability estimates
exceed 1/N, and stability fixation probability estimates exceed 1 — (1/N)). Below this b/c
threshold, empathizers are selected against. Viability fixation probability estimates increase with
sociality when b/c > 8, but stability fixation probability estimates decrease with sociality when
b/c < 8. The explanation is this: as sociality increases, empathizers cooperate more, and when
the gains from cooperation are sufficiently high, this increases their average fitness relative to
competing defectors, but when the gains from cooperation are low, this decreases their average

fitness relative to competing defectors.
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Fig. 4. The impact of social context on the evolution of cooperation. N=200,g=s=8, w=0.1,c=1,
8000 simulations per estimate. Unconditional cooperation relies on high sociality and gains from
cooperation to evolve, but discriminatory empathy can persist and spread even when sociality is low as
long as the gains from cooperation are sufficiently large. a, b, The fixation probability estimates for
cooperators invading a population of defectors (viability). ¢, d, The fixation probability estimates for
resident cooperators fending off invading defectors (stability). a, ¢, The estimates for unconditional
cooperators. b, d, The estimates for empathizers who cooperate only with social neighbors. If a cell is blue

(red), the cooperators are selected for (against).
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3.2. Analytical results
In their 2007 paper, Ohtsuki, Nowak, and Pacheco apply the technique of pair approximation to

an evolutionary game model on a multilayer network and find that unconditional cooperation is
. b : . . . . .
favored by selection when -> %. I apply this technique to replicate this rule for the evolution

of unconditional cooperation and to derive a similar rule for the evolution of empathy: b/c > s.
This analytical result aligns with the numerical results. Both suggest that discriminating on the
basis of social distance mitigates the damage low sociality inflicts on the evolutionary feasibility

of cooperation.

Pair approximation comprises a method for approximating evolutionary dynamics and
equilibrium conditions on networks by focusing on the dynamics as they occur among node pairs
(Baalen, 2000). This abstraction away from the complex geometry of the full network makes
possible the derivation of differential equations that describe the essential dynamics of the
model. In the context of the model in this paper, pair approximation shows that when selection
strength is weak (w « 1), the local density of strategies on the network equilibrates faster than
the global density of strategies. The strategy with the higher fitness in this local strategy density

equilibrium is likely to prevail in the simulation.

Let p, be the prevalence of strategy A in the entire population, and let qgi; be the probability

that any neighbor on layer * of a B-strategy node is an A-strategy node (i.e. qgﬁg represents the

local density of A around B in the * layer). Then, in a population of competing A and B

strategies, the following identities always hold:

auin” = 4z = Pa (4)
) = qf) (5)

On the network of edges belonging only to the economic layer (G — O), the probability of a
neighbor of either strategy being an A player is equal to the global prevalence of that strategy.
This is because these non-social ties are unrelated to strategy transmission, so no assortment
arises on G — O. The local strategy densities on the social (S) and overlap (O) layers are identical

since the overlap layer is a subset of the social layer.
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In the case of weak selection, qgslzl equilibrates before p, does. This local strategy density
equilibrium approximates the state of the population in the simulations while p, € (%, 1- %) In

this equilibrium, the following relationship holds (Ohtsuki et al., 2006, Supp. Eq. 17):

1
&) ) _
Qaja —9aB =57 (6)

In words, A nodes are more likely than B nodes to be social neighbors with other A nodes. This
strategy homophily (i.e. clustering of strategies) arises on the social layer because social
neighbors may, at some point, have acquired their current strategies from one another. The

mathematical derivation can be found in Appendix D.

At this point, rather than estimating and comparing fixation probabilities as Ohtsuki and his
coauthors do (2006, 2007), I employ a shortcut I developed: I compare the fitness of the
strategies competing for emulation in the local strategy density equilibrium. In Appendix D, I

present a proof of the validity of this approach.

To compare the fitness of two strategies competing for emulation in this equilibrium, I must

compare their payoffs, and to compare their payoffs, I must compare their expected economic
neighborhoods. But since quA_O) = qg?B‘O) = p,, the difference in economic neighborhoods is

the same as the difference in overlap neighborhoods. Let A4 be the number of A nodes in the
overlap neighborhood of an A node and Az be the number of A nodes in the overlap
neighborhood of a B node. From the local strategy density equilibrium relationship (Appendix
D), I find that

F(Ay—Ag) == ™

Thus, the expected difference in total round payoffs between an unconditional cooperator (C)

and a defector (D) competing for emulation is given by

b
(e —Tp) = (b-Co—c-g) = (b-Cp) =——=—c-g ®

which is positive when
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b 'S
-> g_ (9)
c 0
This inequality—originally derived by Ohtsuki et al. (2007)—specifies the conditions of
sociality and gains from cooperation under which unconditional cooperation is selected for.
In the case of empathizers who cooperate only with social neighbors (x = 1), the expected
difference in total round payoffs between an empathizer (M) and a defector (D) competing for
emulation is given by
b-o
which is positive when
b
—>s (1D
c

This inequality specifies that empathy is selected for as long as the gains from cooperation

exceed the degree of the social layer.

The numerical estimates from the simulations corroborate the analytical rules for both
unconditional cooperators and empathizers. As shown in Figure 4, in the simulations where g =
s = 8, unconditional cooperators are only selected for in the upper right corner where b/c >

64 /0 whereas empathizers are selected for whenever b/c > 8.

The evolutionary success of any strategy in the simulations depends firstly on its capacity to
duplicate before being eliminated (Fig. C.2) and secondly on its relative fitness in the local
strategy density equilibrium. Under weak selection, cooperators invading a population of
defectors may survive to the local density equilibrium; then, if the network and game conditions
satisfy the relevant analytical rule, the invading cooperators reap a higher average payoff and are
therefore likely to spread. Similarly, under weak selection, defectors invading a population of
cooperators may survive to the local density equilibrium; then, if the network and game
conditions satisfy the relevant analytical rule, the resident cooperators reap a higher average

payoff and are therefore likely to fend off the defectors.
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4. Discussion

In this paper, I developed an evolutionary game model on a multilayer network to explore the
impact of social context on the evolution of cooperation. The main results are intuitive: when we
interact with both familiars and strangers, it is adaptive to cooperate with the former but not the
latter. Low sociality impedes the evolution of unconditional cooperation but not the evolution of
socially-contingent cooperation—i.e. empathy. However, if empathy spreads to the whole
population (i.e. fixates), the prevalence of cooperative behavior depends directly on the degree of

sociality.

Empathy, as I have defined it, combines the evolutionary tactics of discrimination and assortment
to concentrate the benefits of cooperation among cooperators: empathizers cooperate with those
who, due to the strategy transmission process, are more likely than chance to also be
empathizers. The limiting factor then becomes the degree of the social layer which dictates the
“relatedness” of overlap neighbors—i.e. the likelihood they share the same strategy. This
interpretation is embodied in the analytical rule for the evolution of empathy, which can be
rewritten as (1/s)b > c, such that 1/s corresponds with the relatedness coefficient of

Hamilton’s rule (Bowles & Gintis, 2011; Hamilton, 1964; Smaldino, 2023).

These results illustrate a basic logic underlying the evolution of empathy—a logic that does not
depend on the model’s assumptions of static, homogeneous networks, weak selection, or death-
birth updating. If behaviors spread among familiars (via biological reproduction or social
learning), then familiarity functions as a proxy for behavioral relatedness. Thus, conditioning
cooperation on familiarity concentrates the benefits of cooperation among fellow cooperators,

allowing this behavior to persist and spread.

Studies of empathy and socially-contingent cooperation have most often explained the evolution
of this form of conditional cooperation with reference to Hamilton’s theory of kin selection
(Hamilton, 1964) and Trivers’ theory of reciprocal altruism (Trivers, 1971), since social
proximity may coincide with genetic relatedness and interaction duration (Batson, 2010;
Binmore, 2005; de Waal, 2009; de Waal, 2008; de Waal & Preston, 2017; Osinski, 2009; Rachlin
& Jones, 2008). If we interpret the dynamics and results of the model in the context of genetic
evolution, then the social layer, where the strategies spread, is a kin network, and social distance

corresponds to genetic relatedness. The strategy of empathy in this case is identical to
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discriminatory kin-based altruism: cooperate with close kin; defect with others. And this strategy
is an evolutionary improvement over unconditional cooperation when individuals interact with
both kin and non-kin. If, instead, we interpret the dynamics and results of the model in terms of
cultural evolution, then social distance corresponds to cultural rather than genetic relatedness,
and the evolutionary mechanism illustrated is more closely related to parochial altruism (Bowles
& Gintis, 2011) than kin selection. Both genetic and cultural interpretations of the model align
with the evidence that relational closeness correlates with cooperation between kith and between
kin (Rachlin & Jones, 2008). These dual interpretations also align with the evidence that
individuals’ cooperative proclivities are products of both heredity and socialization (Eisenberg et

al., 2013; Kosse et al., 2020).

The model suggests that modern human ecologies may impact cooperative behavior through two
distinct channels: first, through the context-dependent expression of our evolutionary inheritance,
and second, through cultural evolution itself. Since genetic evolution occurs at a much slower
rate than cultural evolution (due to the different means of transmission), our genetic inheritance
may reflect ancient human ecologies while our cultural inheritance may reflect modern human
ecologies (Boyd & Richerson, 2005). Consequently, our innate behaviors may be maladaptive to
large-scale, anonymous market societies. Whereas empathy may effectively foster cooperation in
big game hunts and childcare, it is poorly suited to address climate change and international
conflict. The effects of social context on cultural evolution may also hinder the resolution of
modern cooperation problems. The results of the model suggest that asocial human ecologies
could erode the evolutionary feasibility of unconditional cooperation and select for non-

cooperative behavior (either in the form of unconditional defection or vestigial empathy).

The insights the model provides into the behavioral ecology of cooperation suggest cooperation
problems might be solved either by altering individual incentives to align self-interest with
collective welfare or by changing the social context to better select for and provoke cooperative
behavior. The most effective solution depends on the nature of the specific cooperation problem.
If the context is unavoidably asocial, the incentive approach might be justified by the reality of
self-interested actors. This case is exemplified by a carbon tax implemented to mitigate climate
change. Here, the tax brings the cost individuals impose on the global population back into their

own self-interested calculation, thus relieving the need for any internally motivated cooperation.
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In other contexts, it may be possible to increase the sociality of interactions, thus provoking more
cooperation. This case is exemplified by the management of local resource commons (Dietz et
al., 2003; Ostrom, 2009; Pretty, 2003). Here, the delegation of commons governance to local
communities that depend on the resource may function well on the basis of empathy without any
top-down policy solution tailored to self-interested actors (Bowles & Gintis, 2007; Ostrom,

1990).

More broadly, the model developed here exemplifies how the mathematical tools of evolutionary
game theory and multilayer networks lend themselves to modelling the evolution of context-
dependent behaviors. Such theoretical models provide important insights into the nuance and
dynamism of human behavioral ecology (Gonzalez & Rice, 2024), which could prove key to

navigating the complex social and environmental problems we face today (Schill et al., 2019).

Code availability
The code for running the evolutionary game simulations and replicating the figures can be found

in Supplementary Materials.
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Appendix A. Multilayer network generation

The Watts-Strogatz model (Watts & Strogatz, 1998) specifies an algorithm capable of generating
networks with small-world properties (i.e. small distances and high transitivity). By modifying
the rewiring method to preserve degree distribution, this same algorithm can produce random

regular networks as follows:

19



1. Construct a circulant network with the desired even degree.

2. Arrange the edges in a list and for each edge, designate one adjacent node as the
“tail” and the other as the “head.”

3. Rewire each edge in the list by selecting an edge at random and swapping their “tail”
nodes (adding as a constraint the condition that no self-loops or duplicate edges are
created). If a random subset of the edges are rewired such that some of the initial
circulant structure remains, then the resulting network will have the small-world
properties of short distances and high transitivity. The more edges rewired, the lower
the transitivity of the resulting network.

To extend this algorithm to generate a multilayer network with the given parameters of V, s, g,
and o, (where s, g, and o are even and 0 < min (g, s)), I begin with a circulant network of
degree s + g — o. After rewiring, this network (S’ U G") will become the union of the social and
economic layers (S U G). I partition the edges of this union circulant network into three disjoint
subsets: the social sans overlap layer (S’ — 0"), the economic sans overlap layer (G' — 0'), and
the overlap layer (0"). I then rewire the networks to obtain S — 0 = R(S' — 0"),G — 0 =

R(G' —0"),and O = R(0"), swapping only edges within the same subset while also avoiding
the creation duplicate edges in the superset union network. The original edge is included in the
set of potential rewiring pairs, so with the same probability as rewiring with any other given
edge, the edge is not rewired. Also, if no pair rewiring is possible that does not create duplicate
edges, then the original edge is kept. This process is illustrated in Figure 1 for N =20, s = g = 4,
and o = 2. When all edges have been rewired, the social layer is obtained by adding the rewired
social sans overlap edge set to the rewired overlap edge set (S = (S — 0) + 0), and the
economic layer is obtained by adding the rewired economic sans overlap edge set to the rewired

overlap edge set (G = (G — 0) + 0).

This algorithm can be modified to generate a three-layer multilayer network with regular,
controlled overlap between each layer. In this case, the edge set of the union circulant network
must be partitioned into seven disjoint subsets, one for layer 1 alone, one for layer 2 alone, one
for layer 3 alone, one for layer 1 and 2 without layer 3, one for layer 1 and 3 without layer 2, one
for layer 2 and 3 without layer 1, and one for the overlap of all three layers, each of which must
be rewired separately and without creating duplicate edges in the edge superset. Accordingly,

with more than three layers, the process becomes even more unwieldy.
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Appendix B. Utility function specification
Let i and j be nodes interacting in the game described in Figure 2. If i is selfish, she will defect
since b > b — c and 0 > —c. If i cares sufficiently about j, she will cooperate since b > c. These
motivations can be expressed in terms of a utility function incorporating the payoffs of i and j:
u;(m; ;,;;). To operationalize empathy, I specify the other-regarding component of i’s utility
function as a hyperbolic function of the social distance between i and j in accordance with the
empirical findings of the social discounting literature (Jones, 2022; Jones & Rachlin, 2006):

ATl
Tt 51-(le:. —1)

u; = (B].)

where 7; ; represents the game payoff of player i interacting with player j, d; ; is the social
distance between i and j, a; represents how much i values the payoffs of a social neighbor
relative to her own, and §; is the social discount factor which specifies how quickly empathy

decays with social distance.

Individual i will thus cooperate with j as long as

aib
1+46;(d;; —1)

>c (B.2)

Individuals for whom a; < ¢/b will defect unconditionally. Individuals for whom a; > c¢/b and

6; = 0 will cooperate unconditionally. And individuals for whom a; > % and &; > 0 will

cooperate conditional on sufficient social proximity. Specifically, these empathizers cooperate

aib—c

with all j for whom d; ; < T 1. Thus, this utility function produces a behavioral strategy

4

that can be alternatively defined by the single discrete empathic range variable, x; € N,
indicating that i will cooperate with all j for whom d; ; < x;. (I define x; based on the weak
inequality for intuitiveness of interpretation.) Figure B.1 illustrates graphically this derivation of

x; from b, c, a;, and §;. The strategy defined by x; could also be obtained from alternative utility
a;m;
dij—1

function specifications. For example, the specification u; = m; + (which reflects Goeree et

al.’s “1/d Law of Giving” (2010)) yields the same discrete empathic range trait x;. The
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evolutionary dynamics in this paper, however, depend only on the empathic range trait, so my

results are agnostic with regard to the choice of utility function specification.

Cost of cooperation = ¢

Discounted benefit of cooperation =

Defect

Social distance = d;
3 4 5

Fig. B.1. Social discounting utility function specification. If the socially discounted benefit of cooperation
(which declines with social distance) exceeds the cost of cooperation, the empathizer will cooperate. This
means that given a; and J;, i will cooperate with every economic neighbor within a certain distance in the
social layer and defect with all others. In the example shown in this figure, i will cooperate only with
economic neighbors who are 1 or 2 edges away in the social layer. This behavioral strategy can be
represented as a discrete empathic range: x; = 2.

Appendix C. Selection strength

C.1. Conceptual discussion

In evolutionary models, weak selection allows a single cooperator to invade a population of
defectors. Isolated cooperators necessarily have a lower payoff than the defectors they are
competing against, so they must initially spread stochastically against the gradient of selection to
form a cluster of cooperators, which can then compete with defectors in terms of fitness. How

realistic, then, is this assumption?

Selection strength likely differs across the realms of cultural and genetic evolution. In the case of
genetic evolution, fitness refers to an organism’s propensity to survive and reproduce and thus
pass on their genetic traits. Here, fitness is a product of a multitude of interactions of which the

trait-relevant game is only one, so weak selection is justified.
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In the case of cultural evolution, since enculturation is not limited to vertical transmission
following biological reproduction, fitness applies to the traits carried by the organism rather than
the organism itself. The propensity of a socially learned behavior to persist and spread need not
be directly correlated to the overall material success of the trait-bearer. The latter could be the
case if the spread of the cultural trait is achieved by means of power and wealth (e.g. control of
the media, intentional indoctrination, conquest and replacement). But cultural traits could also be
selected for by voluntary preferential adoption, in which case, the fitness of the trait in the

individual is likely a function of their payoffs from trait-relevant interactions.

C.2. Numerical results

Figure C.1 reports the fixation probability estimates for unconditional cooperators and
empathizers (x = 1) competing against defectors under various conditions of sociality (o/g)
and selection strength (w). I hold the gains from cooperation at a constant level sufficient to
promote some evolutionary success of cooperation (b/c = 12). The viability fixation probability
estimates decrease with selection strength for unconditional cooperators and for empathizers
when sociality is high (in which case they act like unconditional cooperators). On the other hand,
no clear relationship exists between selection strength and the stability fixation probabilities

estimates for resident cooperators (either unconditional cooperators or empathizers).

The detrimental effect of selection strength on the evolutionary viability of invading cooperators
can be explained with reference to the probability of those invaders forming a cluster. As
selection strength increases, invading cooperators are less likely to duplicate before they are
eliminated, and for empathizers, this effect intensifies with increasing sociality (Fig. C.2a). The
effect of selection strength on the duplication probability of unconditional cooperators is not
mediated by sociality since their behavior is not conditioned on it. In the case of the evolutionary
stability of resident cooperators, however, cluster formation is not a challenge since the initial
conditions are characterized by one massive cooperator cluster. Higher selection strength still
increases the chance of the invading defector duplicating, but the effect is miniscule compared to
the case of cooperator invasion (Fig. C.2b). In both cases, when payoffs cease to matter (due to a
selection strength of zero or when empathizers are indistinguishable from defectors), the

probability that an invading strategy duplicates before it can be eliminated becomes 0.5.
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Fig. C.1. The impact of selection strength on the evolution of cooperation. N=200,g=s=8,b=12,c=1,
8000 simulations per estimate. In the case of cooperator invasion (a. and b.), the evolutionary viability of
unconditional cooperation appears to decrease with increasing selection strength. This effect also holds for
empathizers when sociality is high. In the case of defector invasion (c. and d.), the evolutionary stability of

cooperation appears to be unrelated to selection strength. If a cell is blue (red), the cooperators are selected
for (against).

Invader fixation

Resident fixation
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Empathy:|0% o/g

Cooperator duplication probability

Empathy: 25% o/g

| Empathy:[50% o/g

Empathy:|75% o/g

Unconditional cooperation

=

Empathy: 0% o/g

Empathy: 25% o/g

Defector elimination probability

s——————————— — ——— |
Unconditional cooperation

Selection strength (w)

Fig. C.2. The impact of selection strength on initial trait proliferation. N=o0o, h=g=8,b=12,c=1. a. As
selection strength increases, invading cooperators are less likely to duplicate before they are eliminated,
and for empathizers, this effect intensifies with increasing sociality. b. In the case of resident cooperators,
the probability that the invading defector is eliminated before it can duplicate also decreases with selection
strength, but the effect is miniscule. In both cases, when payoffs cease to matter (due to a selection strength
of zero or when empathizers are indistinguishable from defectors), the probability that an invading strategy
duplicates before it can be eliminated becomes 0.5.

C.3. Calculating the probability of invader duplication

The probability that event X occurs before event Y, given that X occurs each period with

probability x and Y with the probability y, is % Using the fitness equation and adding c to all

payoffs in Figure 2 to avoid negative probabilities (as is done in the simulations), we can

calculate these duplication probabilities. For simplicity, I assume N to be arbitrarily large (if I

keep a finite N in the calculations, the results don’t change much, but the functions become even

more cumbersome). For unconditional cooperators, the probability in each period that the

invader duplicates is
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s f s 1—-—w
(N) fc+ (sc— Dfp - (ﬁ) s(1—w)+ (s—1wgc €1

And the probability in each period that the invader is eliminated is % The probability then that

the unconditional cooperator duplicates before it can be eliminated is

sfe B s(1—w) c.2)
+Df,+(G-1f, 2s(1—w)+(s—1Dwgc '
For empathizers, the probability in each period that the invader duplicates is
s sy 1 —w+w(g—o)c
(_) fe _ (_) (g—0) c.3)
N/ frp+(s—1)fp, N/s(1—-w+wgc)—woc

And the probability in each period that the invader is eliminated is % The probability then that

the empathizer duplicates before it can be eliminated is

Sfg B s(1-w+w(g—o0)c)
G+Dfr+(G—-1Dfp, 2s(1 —w+wgc)—woc(s+ 1)

(C.4)

These duplication probabilities are plotted in Figure C.2a. Note that if there is no difference in

fitness (if the payoffs are equal or if w = 0), the duplication probabilities simplify to

sf 3 1
GIDf+G-Df 2 (C.5)
Note also that
i sfe _ —swc(s —1)fp
do ((s +Dfp+(s— 1)fD) [+ D+ (s—Dfp]? <0 (C.6)

i.e. duplication probability declines with overlap.

Using the same tools and assumptions, we can calculate probability that invading defectors are
eliminated before they can duplicate. In the case of unconditional cooperators, the probability in
each period that the defector is eliminated is 1/N, and the probability in each period that the
defector duplicates is

s 1-w+wg(+c)
(ﬁ)s(l —w)+wg((b+c)+ (s—1)wbg

€.7)

26



The probability then that the defector is eliminated before it can duplicate is

s(1-w+wg(+0))
B 2s(1—w)+ (s +Dwgb+c)+ (s—1)whbg

(C.8)

In the case of empathizers, the probability in each period that the defector is eliminated is %, and

the probability in each period that the invader duplicates is

(s) 1—w+w(ob+ gc) c.9)
N/ s(1 — w+wob) + wc(sg —so + o) '
The probability then that the defector is eliminated before it can duplicate is
s(1—-w+w(ob + gc
( (0b + g0)) (€.10)

1 —
2s(1 — w4+ wob) +wc(2sg — so + o)

These duplication probabilities are plotted in Figure C.2b.

Appendix D. Derivation of the analytical rule
In this section, I derive the local density equilibrium conditions and formulate a proof
demonstrating the logic of the shortcut I employ to obtain the analytical rule for the evolution of

empathy.

As before, let p, be the prevalence of strategy A in the entire population, and let qﬁ% be the

probability that any * neighbor of a B-strategy node is an A-strategy node. Also, let pgj be the

prevalence of AA strategy pairs among all Nk /2 edges in any layer * of k degree. Then, in a

population of competing A and B strategies, the following identities always hold:

patpp=1 (D.1)
pfflf + pffﬁ + pé*ﬁ =1 (D.2)
pia = pea (D.3)
)
o D
qlpy =22 (D.4)
P
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qSy =1-a5, (D.5)

5,7 = a5 = pa (D.6)
¢ =q5 (D.7)

The intuition behind equation (D.4) is that the prevalence of AB pairs in the vicinity of a B
multiplied by the global prevalence of B is equal to the global prevalence of AB pairs—

multiplying qgag by pg undoes the conditionality of the prevalence. As discussed in the main

text, the last two identities are the consequence of the separation of the interaction (economic)

and updating (social) layers.

The probability that the number of A nodes increases in any given round is equal to the

probability that a B node is chosen to update and becomes an A:

N

1 s! SaA Sp SAfA

p(a =_>= Z © %4, ala D.8

<pA N) = Ps OSA!SB!quB 515 Safa + Spfs (D-8)
SpA=

where s, denotes the number of social neighbors of the updater with strategy A (so s4 + sg = 5),

and f, denotes the expected fitness of an A. The intuition behind this expression is this: pg is the

S S
s qgsll)g Aql(?slé % is the probability of any given B

probability a B node is chosen to update;
salsg!

node having s, social neighbors with strategy A; and —SaTA__ s the probability that one of the

safa+sefB

s, social neighbors is chosen to be emulated. The sum is taken across these probabilities for all
possible neighborhood configurations and their prevalence. Consequently, the probability that the

number of social AA pairs increases by s, is given by

ZSA) _ S! (S) SA (S) SB sAfA
~n ) = PB

P(A ) = —A
Paa SN SA!SB!CIA|B B|B SAfA+SBfB

(D.9)

since updating a B node with s, social neighbors with strategy A results in s, new AA pairs out

of sN /2 total social edges.

Now, let each round of each simulation be considered as one unit of time. Then,
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L P(A —-1) 1 P<A _ 1) (D.10)
dtPA =N PA—N N Pa = N .
and
d 2s 2s
LOR)= 2 B (=) - p (=2 @an
s4=0

In the case of weak selection (w < 1), p changes more quickly than p, since

d
lim (a (PA)) =0 (D.12)
but
d 2
. ©) ©) © _ _©
$2%<dt(pAA)> pAB[l-F(S——l)(qMB a5)| > 0 (D.13)

This is to say that when there is no selection occurring and therefore no differences in fitness, A
nodes are just as likely to become B nodes as B nodes are to become A nodes, so the expected
rate of change of the global prevalence of strategies is 0. But strategy updating even without
selection still leads to a clustering of strategies in the social layer of the network since in any pair
of social neighbors, one may have adopted its current strategy by emulating the other. A more
detailed derivation of these equations can be found in the supplementary section of Ohtsuki et al.

(2006).

The intuition for equation (D.11) is this: The change in the prevalence of AA social pairs depends
on the prevalence of AB social pairs, since both the creation and destruction of AA pairs relies on
the existence of a B near an A (to create an AA, an AB pair must become an AA pair, and to
destroy an AA pair, a B node must occur in the AA pair’s extended neighborhood to be
emulated). Thus, the number of AA pairs changes only along the strategy boundaries marked by

AB pairs. Now, consider a given AB pair. The neighborhood of the A includes on average

(s—1)gq A|1)4 A nodes, and the neighborhood of the B includes on average 1 + (s — 1)q£15“)B

nodes. If the B updates and emulates an A, then, on average, 1 + (s — 1)q a1 NeW AA pairs will

be created, and if the A updates and emulates a B, then, on average, (s — 1)q A|1)4 AA pairs will be
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lost. Thus, the rate of change of the number of AA pairs is proportionate to 1 + (s — 1)(q£15“)3 —
($)
qA|A)'

) _

Since q aa = pﬁ) /P4, We can also derive the time derivative for q/(fli as strength of selection

approaches zero:
)
im [ —(¢g©® )| = Z_F48 _ ) _ ©
ol (dt (quA)> =N p, 1+ s = (a5 —a5)] (D.14)
It is due to this difference in the rate of change of p, and qgslil that, in the case of weak selection,

qgﬂ equilibrates before p4 does. The qga equilibrium, defined by % (qga) = 0, yields the

following relationships (Ohtsuki et al., 2006):

1
qgs|,)4 =pat =71 —pa) (D.15)

1
Goia =1 aia =1=Pa— =51 =pa) =P~ 5P (D.16)

1 1 1
q,gf,)al_qf(ﬁ))g=PA+m(1—PA)—PA+S_1PA=S_

1 (D.17)

Thus far, I have followed the method of Ohtsuki et al. (2006, 2007). At this point, Ohtsuki and
his coauthors estimate fixation probabilities and derive their analytical rules by comparing these
formulas. In contrast, I derive the rules for the evolution of unconditional cooperation and

empathy using a shortcut whereby I compare the expected payoff of the competing strategies at

the local strategy density equilibrium.

But why does this work? Consider the probability that an updater emulates an A or a B node:

[ (s )
. _ 3'QA|A'E[A] S-qA|B-E[fA]
E[Pr(U - A)] = p, —ZNS(U)f B [—ZNS(U)f (D.18)
i ) (s)
5 _ S'qB|A'E[fB] S'quB-E[fB]
Flor = B = g f g f (D-19)

SO
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E[Pr(U - A)] > E[Pr(U - A)]

o [F a5 - ELfa] s+ a5y Elfal
N Zvanf 2ng) f
[ aon - Elfs] s qyy " Elfs]
N Inaf Bl Snanf
o pa(aShh - EUf]) +ps(ayy - ELf))
> pa(asis - Elfal) + vs(a5s - Elfs]) (D.20)

Using Equations D.15 and D.16, this inequality simplifies to

pa - Elfal > pg - Elfs] (D.21)

Now, recall that a trait is said to be selected for if it fares better than a neutral mutant. If A is a

neutral mutant of B, then E[f,] = E[f3], in which case Inequality (D.21) simplifies to

Pa > DB (D.22)

Thus, strategy A fares better than a neutral mutant if

Pa Elfal —pp " Elfs] > pa— s (D.23)
which is true when
Elfal > Elf3]
& E[M,] > E[lg] (D.24)

Interestingly, this rule is also arrived at by comparing E[Pr(U — A)] with E[Pr(U — B)] when
the population is equally split between A and B (p4 = pg)—or by switching to a deterministic
updating rule based on the maximum payoft once the local strategy density equilibrium is

reached.

Now, to compare the expected payoffs of the two competing strategies, I compare their expected
economic neighborhoods in the local strategy density equilibrium. In the non-social economic
network (G — 0), there is no difference in the expected neighborhoods (since assortment only

arises on the social network). Therefore, the expected difference in economic neighborhood is
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equal to the expected difference in the overlap neighborhood. Let A4 be the number of A nodes

in the overlap neighborhood of an A node and Az be the number of A nodes in the overlap

neighborhood of a B node. To find E (A, — Ag) in the local strategy density equilibrium, we

must consider eight scenarios arising from the strategy of the updater, U, and its position relative

to the A and B nodes competing for emulation:

1. Uisan A player

2
a. U is in the overlap neighborhood of both A and B (occurs with probability (g) )

E(4,— Ag) = (0 — D(q50) — a533)

b. U s in the overlap neighborhood of A but not B (Pr = %(1 - g))

E(A;—Ag) =1+ (o

- 1)‘7151?21 —0q B

(0)

c. Uis in the overlap neighborhood of B but not A (Pr = 3(1 - g))

2
d. U is in the overlap neighborhood of both A and B (Pr = (1 - g) )

E(A, — Ag) = o(

2. UisaB player

2
a. U s in the overlap neighborhood of both A and B (Pr = (—) )

(0) (0)
a4 — YaiB

E(4, — Ap) = 05 — (0 — 1)qs

1B

)

E(As — Ag) = (0 — D)(q5) — 45)

b. U is in the overlap neighborhood of A but not B (Pr =
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2
d. U is in the overlap neighborhood of both A and B (Pr = (1 — g) )
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)
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Whether U is an A or a B player, the expected difference in the number of A nodes in the overlap
neighborhoods is then

s~ 40 = () 0= (e - o)
- +2(1- -) (0= 1)g5) — 045 + 0q) — (0 — 1Da(3)
+(1-9) o(a - 42) (0.33)

Substituting in qﬁujl qg(l); i this becomes

20—-1
s—1

+0(1 o) 20 1 a )) + 1
S YA Pa s _1 Pa Pa S_lpA

E(Ay—Ap) = (g)

2 (D.34)
S

Lastly, note that if we separate the social layer (S) from a “cultural” trait transmission layer (L),

0gs'l
Ogl

. b . . .
the rule for the evolution of empathy becomes -> , Where oy is the social-economic overlap

degree, [ is the cultural degree, and oy is the cultural-economic overlap degree. As mentioned

above, the multilayer network generation algorithm could be modified to generate a three-layer

multilayer network on which such evolutionary game simulations could be run.
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