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Social Context and the Evolution of Empathy 

 
Abstract 

Human societies differ in the social context of their economic interactions: whereas hunter-

gatherers depend primarily on familiars for their subsistence, people in market societies depend 

primarily on strangers. This variation raises a critical question: How does social context 

influence the evolution and behavioral expression of empathy? Experimental evidence 

consistently shows that empathy increases with social closeness. Using evolutionary game 

theory, I examine how empathy evolves in various social-economic ecologies. I situate the 

evolutionary game on a network with distinct social and economic layers (where strategy 

transmission and game interactions occur, respectively), and I define empathy as cooperating 

conditional on social proximity. The numerical and analytical results reveal that when 

interactions occur among both familiars and strangers, discriminatory empathy outperforms 

unconditional cooperation, but when interactions occur only among strangers, empathy produces 

no cooperation. Using pair approximation, I show that empathy is selected for when the gains 

from cooperation (b/c) exceed the degree of the social network (s). This pattern parallels 

Hamilton’s rule, with 1/s corresponding to the relatedness coefficient. Broadly, the results 

illustrate that if behaviors spread among familiars, familiarity serves as a proxy for behavioral 

relatedness; in this way, conditioning cooperation on familiarity concentrates the benefits of 

cooperation among cooperators, allowing this behavior to persist and spread. These findings 

highlight the behavioral consequences of modern human ecologies characterized by anonymity 

and provide insights for designing institutions and structuring human ecologies that better foster 

cooperation. 

 

Keywords: Empathy; Cooperation; Cultural evolution; Evolutionary game theory; Social 

networks 

 

1. Introduction 

We are a social species. Our aptitude for cooperation and social learning has enabled us to adapt 

to a wide variety of ecosystems and organize into diverse sociocultural configurations. This array 
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of human ecologies gives rise to cooperation problems that range in scale and scope from 

mammoth hunts to climate change. Simultaneously, human ecology shapes the evolution and 

expression of cooperative behaviors such as empathy. In this paper, ecology refers to the pattern 

of relationships between individuals and their environments (Gonzalez & Rice, 2024), 

cooperation refers to any action that is individually costly but collectively beneficial (Rand & 

Nowak, 2013), and empathy refers to an internal state that motivates cooperative action 

contingent on social proximity (Davis, 2015). The social context of economic interactions 

constitutes an important dimension of human ecology that varies across different societies. 

Whereas hunter-gatherers know most of those whom they depend upon for subsistence, the 

constituents of market societies depend primarily on strangers. In this paper, I explore the effects 

of social context on the evolution and behavioral expression of empathy. 

Empirical evidence indicates that cooperation increases with the sociality of the interaction 

context. Game theoretic experiments have demonstrated this effect by manipulating social 

context in various ways. Reducing anonymity by identifying subjects by name or photograph or 

by conducting the game in a face-to-face setting tends to promote cooperation (Ariely et al., 

2009; Bohnet & Frey, 1999; Burnham, 2003; Charness & Gneezy, 2008; Choi & Storr, 2020; de 

Oliveira et al., 2014; Frey & Bohnet, 1997; Krysowski & Tremewan, 2021; Leider et al., 2008; 

Ligon & Schechter, 2012; List et al., 2004; Rankin, 2006; Rege & Telle, 2004; Schram & 

Charness, 2015), and so does permitting discussion among subjects before the game (Andreoni 

& Rao, 2011; Batson & Ahmad, 2001; Batson & Moran, 1999; Bochet et al., 2006; Frey & 

Bohnet, 1997; Ostrom & Walker, 1997; Sally, 1995). Revealing the group identities of subjects 

tends to prompt in-group cooperation (Bicchieri et al., 2022; Glaeser et al., 2000; Habyarimana 

et al., 2007; Howe et al., 2023). Most notably, in non-anonymous games, social distance between 

interaction partners in their real-world social networks correlates negatively with cooperation 

(Apicella et al., 2012; Brañas-Garza et al., 2010; Chandrasekhar et al., 2018; Goeree et al., 2010; 

Leider et al., 2008). Similarly, questionnaires of hypothetical choices suggest that cooperation 

increases with subjective relational closeness (Jones, 2022; Jones & Rachlin, 2009; Jones & 

Rachlin, 2006; Kardos et al., 2023.; Locey et al., 2011, 2013; Osiński, 2009; Rachlin & Jones, 

2008; Vekaria et al., 2017). 
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Psychologists also expound the importance of relational context in understanding cooperative 

behavior (Clark et al., 2015; Kardos et al., 2023), especially in the literature on empathy. 

Although empathy has been defined in a number of ways (Batson, 2009; Davis, 2015), the 

concept generally refers to a cognitive, affective, and/or behavioral response of one individual to 

the state of another (Davis, 2015; de Waal & Preston, 2017). Empathic responses are mediated 

by psychological and social context (Cialdini et al., 1997; Davis, 2015; Hoffman, 2008; Preston 

& Waal, 2002; Singer & Lamm, 2009; Singer & Tusche, 2014). Namely, empathy increases with 

familiarity, similarity, past experience, and salience (de Waal, 2009; de Waal & Preston, 2017; 

Hoffman, 2008; Loewenstein & Small, 2007; Preston & Waal, 2002; Singer & Tusche, 2014). 

These effects of “psychological distance” (Davis, 2015) or “relationship closeness” (Cialdini et 

al., 1997) encapsulate the general observation that the strongest empathic responses occur 

between close friends or family and the weakest between out-group strangers (Davis, 2015). The 

internal cognitive and affective aspects are often associated with cooperative behavior (Batson et 

al., 1981; Batson, 2009, 2010; Batson & Ahmad, 2001; Batson & Moran, 1999; Cialdini et al., 

1997; Davis, 2015; de Waal, 2009; de Waal, 2008; de Waal & Preston, 2017; Hoffman, 2008; 

Kamas & Preston, 2021; Preston & Waal, 2002; Rumble et al., 2010; Singer & Lamm, 2009). In 

game theoretic experiments, encouraging perspective-taking in the game instructions increases 

cooperation (Andreoni & Rao, 2011; Batson & Ahmad, 2001; Batson & Moran, 1999, p. 199; E. 

Hoffman et al., 2000; Rumble et al., 2010). Measures of dispositional empathy sometimes 

correlate with cooperation (Edele et al., 2013; Kamas & Preston, 2021; Takagishi et al., 2010), 

and sometimes do not (Artinger et al., 2014; Büchner et al., 2007; de Oliveira et al., 2014; Edele 

et al., 2013; Pelligra, 2011; Sautter et al., 2007), but notably, all those experiments that did not 

demonstrate an effect were conducted in anonymous settings. 

These experimental findings suggest we are more prone to empathize and cooperate in situations 

that are more saliently social and with individuals who are socially closer to us. How might this 

strategy of cooperating conditional on social proximity have evolved? And how does the social 

context of interactions influence its evolution? 

Whereas situational effects of sociality on cooperation are readily observable in experimental 

settings, evolutionary effects are not. Evolutionary game theory provides a framework for 

analyzing evolutionary dynamics by modelling the persistence and spread of behavioral 
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strategies in a population as a function of the relative payoffs the strategies yield in 

intrapopulation game interactions. The human behavioral repertoire (including cooperation) is a 

product of interacting genetic and cultural evolution (Boyd & Richerson, 1988, 2005; Henrich & 

Muthukrishna, 2021). Genes persist and spread via survival and reproduction of the carrier. 

Cultural traits spread via social learning. Given the long history of misuse and misinterpretation 

of evolutionary concepts applied to humans (Gonzalez & Rice, 2024), it is important to 

distinguish between explanation and justification: evolution is not synonymous with progress nor 

is fitness synonymous with desirability.  

Cooperation poses an evolutionary puzzle given the separation of the actor from the benefits of 

their action. If individuals interact randomly with each other and employ unconditional strategies 

(always cooperate or never cooperate), those who never cooperate inevitably accumulate a 

higher payoff than those who always cooperate. Cooperation can only evolve if the benefits of 

cooperation are sufficiently concentrated among cooperators, such that the average cooperation 

benefits received by cooperators exceed the cooperation costs they pay. This logic applies to both 

cultural and genetic evolution and can thus produce both learned and innate cooperative traits. 

Hamilton’s rule expresses this logic in mathematical form: 𝑟𝑟𝑟𝑟 > 𝑐𝑐, where 𝑏𝑏 and 𝑐𝑐 represent, 

respectively, the benefits and costs of cooperation and 𝑟𝑟, the relatedness coefficient, represents 

the proportion of cooperation benefits received by cooperators (Bowles & Gintis, 2011; 

Hamilton, 1964; Henrich, 2018; Smaldino, 2023). This concentration of benefits among 

cooperators can occur through assortment due to the coincidence of behavioral transmission and 

interaction ecologies as in the cases of kin selection (Hamilton, 1964), group selection (Bowles 

& Gintis, 2011), and static networks (Rand et al., 2014), or it can arise through conditional 

behavior as in the cases of direct and indirect reciprocity (Nowak & Sigmund, 2005; Schmid et 

al., 2021; Trivers, 1971), parochial altruism (Bowles & Gintis, 2011), altruistic punishment 

(Boyd & Richerson, 2005), and choice of interaction partners (which results in assortment) 

(Rand et al., 2011). These evolutionary mechanisms may manifest in a variety of proximate 

behavioral motives including social emotions (Batson, 2010; Bowles & Gintis, 2011; Davis, 

2015; de Waal & Preston, 2017; Hoffman, 2008) and internalized or externally enforced social 

and moral norms (Akçay & Van Cleve, 2021; Bowles & Gintis, 2011; Boyd & Richerson, 2005; 

Ohtsuki & Iwasa, 2006; Ostrom, 2000). 
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Models of evolutionary games situated on networks illuminate the effects of population structure 

on the evolution of cooperation (e.g. Allen et al., 2017; Débarre et al., 2014; Lieberman et al., 

2005; Nowak et al., 2010; Nowak & May, 1992; Ohtsuki et al., 2006; Sheng et al., 2024; Su et 

al., 2019, 2022, 2023; Su & Stewart, 2025). A seminal paper by Ohtsuki, Hauert, Lieberman, and 

Nowak (2006) demonstrates that, in the case of a single-layer network where both game 

interactions and strategy transmission occur, unconditional cooperation can persist and spread if 

the gains from cooperation are larger than the number of interaction and transmission neighbors. 

The network structure results in strategy assortment, thereby promoting the evolution of 

cooperation. A number of subsequent studies have shown that separating the loci of strategy 

transmission and game interactions can undermine the evolution of unconditional cooperation by 

lessening the assortment of strategies (Allen & Nowak, 2014; Dong et al., 2023; Ohtsuki et al., 

2007; Su et al., 2019). Since genetic transmission occurs between kin and cultural transmission 

(social learning) occurs among both kith and kin, the transmission network might best be thought 

of as a network of kith and kin—i.e. a social network. This, in turn, suggests that unconditional 

cooperation can evolve only when the interaction context is highly social. But what if 

cooperation is conditioned on social proximity?  

To explore the effect of social context on the evolution of empathy, I develop a model consisting 

of an evolutionary game situated on a network with distinct social and economic layers (Fig. 1, 

2). The game interactions occur on the economic layer, and the strategy transmission occurs on 

the social layer. In this way, I can vary the social context of the evolutionary game by varying the 

social-economic overlap of the network. I define empathy as the strategy of cooperating with 

those within a certain range in a social network and defecting against everyone further away. 

While several others have operationalized empathy in a utility function or as a game theoretic 

strategy (Binmore, 2005; Grohn et al., 2014), the social distance conditionality is novel. Each of 

the situational and relational mediating factors associated with increased empathy in the 

psychology literature (Preston & Waal, 2002) can be related to proximity in a social network: 

familiarity by the definition of a social relation, similarity due to network homophily 

(McPherson et al., 2001), past experience from durable social relationships, and salience in the 

context of face-to-face interactions. To analyze the evolutionary viability and stability of 

empathy, I estimate fixation probabilities numerically by running simulations of the evolutionary 
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game model, and I employ a novel method involving pair approximation (Baalen, 2000; Ohtsuki 

et al., 2006, 2007) to obtain an analytical rule for the evolution of empathy. 

 

2. Model 

The model I develop consists of a prisoner’s dilemma game, the competing strategies for playing 

the game, the fitness function dictating how strategies spread, and the multilayer network on 

which the evolutionary game dynamics occur. I run evolutionary game simulations and apply a 

technique called pair approximation to derive numerical and analytical results describing the 

impact of social context on the evolution of empathy. 

The two-layer network structures the interactions among the population of N nodes. The game 

occurs on the economic layer (G), and the strategy updating occurs on the social layer (S). The 

overlap network (O) is obtained from the intersection of the edge sets of G and S. The economic, 

social, and overlap networks are all regular degree: Every node has g economic neighbors and s 

social neighbors, o of which are both social and economic neighbors. (The term “regular” refers 

to the constant number of neighbors or “degree”.) The sociality of the interaction context is 

represented by the overlap degree divided by the economic degree o/g, which indicates the 

proportion of interactions which occur among familiars. To generate a random regular multilayer 

network from the set of all possible regular multilayer networks given the parameters N, g, s, and 

o, I construct a circulant network of degree g + s – o, partition the edges into (𝐺𝐺′ − 𝑂𝑂′), (𝑆𝑆′ −

𝑂𝑂′), and 𝑂𝑂′; stochastically rewire the edges of each partitioned edge set, 𝐺𝐺 − 𝑂𝑂 = 𝑅𝑅(𝐺𝐺′ − 𝑂𝑂′), 

𝑆𝑆 − 𝑂𝑂 = 𝑅𝑅(𝑆𝑆′ − 𝑂𝑂′), and 𝑂𝑂 = 𝑅𝑅(𝑂𝑂′); and reconstruct 𝐺𝐺 = (𝐺𝐺 − 𝑂𝑂) + 𝑂𝑂 and 𝑆𝑆 = (𝑆𝑆 − 𝑂𝑂) + 𝑂𝑂. 

Figure 1 illustrates this network generation algorithm, which I developed by modifying the 

Watts-Strogatz model (Watts & Strogatz, 1998). A detailed description can be found in Appendix 

A. 
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Fig. 1. Generating a multilayer network. The evolutionary game takes place on a random regular N-node 
multilayer network with distinct social and economic layers. Both layers are random regular networks, and 
the intersection of the layers is also a random regular network, so every node has the same number of 
economic neighbors (g), the same number of social neighbors (s), and the same number of social-economic 
neighbors (o). The random regular multilayer networks used in the simulations are constructed by 
partitioning and rewiring circulant networks. a.–h. depict the rewiring of the circulant union network, 𝑆𝑆 ∪
𝐺𝐺 = 𝑅𝑅(𝑆𝑆′ ∪ 𝐺𝐺′), and each of its partitioned subsets: 𝑆𝑆 − 𝑂𝑂 = 𝑅𝑅(𝑆𝑆′ − 𝑂𝑂′),  𝐺𝐺 − 𝑂𝑂 = 𝑅𝑅(𝐺𝐺′ − 𝑂𝑂′), and 𝑂𝑂 =
𝑅𝑅(𝑂𝑂′) (N = 20, g = s = 4, o = 2). i. depicts the social layer obtained from 𝑆𝑆 = (𝑆𝑆 − 𝑂𝑂) + 𝑂𝑂 (i.e. from the 
union of f. and h.). j. depicts the economic layer obtained from 𝐺𝐺 = (𝐺𝐺 − 𝑂𝑂) + 𝑂𝑂 (i.e. from the union of g. 
and h.). k. depicts an example of a multilayer network used in the actual simulations (N = 200, g = s = 8, o 
= 4) with the edges of 𝑆𝑆 − 𝑂𝑂, 𝐺𝐺 − 𝑂𝑂, and 𝑂𝑂 colored blue, yellow, and green, respectively. 

The nodes of this network interact and update their strategies in a series of rounds. During each 

round, every node plays a one-shot game with each of their economic neighbors. In these games, 

each player chooses to either cooperate or defect (Fig. 2). The act of cooperation consists of 

paying a cost 𝑐𝑐 to convey a benefit 𝑏𝑏 to the other player, where 𝑐𝑐 >  0 and 𝑏𝑏 >  𝑐𝑐. The act of 
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defection is costless and conveys no benefit to the other. The game defined by these actions and 

payoffs is an example of a prisoner’s dilemma. 

 
Fig. 2. Game payoffs. Each round, every node plays a one-shot prisoner’s dilemma with each of its 
economic neighbors, accumulating payoffs according to the payoff matrix shown. b and c denote the 
benefits and costs of cooperation, respectively. 

Each node plays the game according to their inherited or learned behavioral strategy. This 

strategy is defined by an empathic range variable, 𝑥𝑥𝑖𝑖 ∈ ℕ, which indicates that node i will 

cooperate with every economic neighbor who is 𝑥𝑥𝑖𝑖 or fewer social edges away and defect against 

all others. In other words, i will cooperate with j if and only if 𝑑𝑑𝑖𝑖,𝑗𝑗 ≤ 𝑥𝑥𝑖𝑖, where 𝑑𝑑𝑖𝑖,𝑗𝑗 is the 

distance between i and j in the social layer of the multilayer network. If 𝑥𝑥𝑖𝑖 = 0, node i defects 

unconditionally. If 𝑥𝑥𝑖𝑖 ≥ diameter(𝑆𝑆), node i cooperates unconditionally. If 𝑥𝑥𝑖𝑖 ∈

�0, diameter(𝑆𝑆)�, node i cooperates conditional on social proximity. Throughout this paper, I 

refer to these three types as defectors, unconditional cooperators, and empathizers, respectively. 

Note that empathizers who cooperate only with social neighbors (𝑥𝑥𝑖𝑖 = 1) behave identically to 

unconditional cooperators in the context of full sociality (𝑜𝑜/𝑔𝑔 = 1) but behave identically to 

defectors in the absence of sociality (𝑜𝑜/𝑔𝑔 = 0). The prevalence of cooperation in a population of 

empathizers thus depends directly on the sociality of the interaction context. I demonstrate in 

Appendix B how this behavioral strategy defined by 𝑥𝑥𝑖𝑖 can be obtained from a utility function 

with an other-regarding component that decays with social distance. 
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Each round, each node, i, accumulates a total payoff from the games played with their economic 

neighbors: 

Π𝑖𝑖 = � 𝜋𝜋𝑖𝑖,𝑚𝑚
𝑚𝑚∈𝑁𝑁𝑖𝑖(𝐺𝐺)

(1) 

𝑁𝑁𝑖𝑖(𝐺𝐺) denotes the set of economic neighbors of i. The fitness of node i (i.e. i’s propensity to 

spread its behavioral strategy) is then calculated from this total payoff according to the following 

equation (Ohtsuki et al., 2006, 2007): 

𝑓𝑓𝑖𝑖 = 1 − 𝑤𝑤 + 𝑤𝑤 ∙ Π𝑖𝑖 (2) 

where 𝑤𝑤 ∈ [0,1] is the strength of selection. This parameter specifies the importance of payoffs 

in the updating dynamic. When 𝑤𝑤 = 0, strategies spread according to neutral drift (i.e. they 

spread stochastically and independently from payoffs); when 𝑤𝑤 = 1, strategies spread according 

to the relative size of the payoffs reaped by the strategy-bearing nodes. 

Each round, after all games have been played, one node is selected randomly from the population 

to update their strategy by emulating one of their social neighbors. This updating mechanism is 

called the death-birth rule (Ohtsuki et al., 2007). The updating node, i, adopts the strategy of any 

one of their social neighbors, j, with a probability proportionate to j’s relative fitness: 

P(𝑖𝑖 emulates 𝑗𝑗) =
𝑓𝑓𝑗𝑗

∑ 𝑓𝑓𝑚𝑚𝑚𝑚∈𝑁𝑁𝑖𝑖(𝑆𝑆)
(3) 

where 𝑁𝑁𝑖𝑖(𝑆𝑆) is the set of social neighbors of 𝑖𝑖. 

I analyze the evolutionary properties of cooperation in this model by employing two different 

approaches, one numerical and the other analytical. For the first, I run simulations to estimate 

fixation probabilities (the probability of a single invading strategies spreading to the entire 

population). For the second, I apply the technique of pair approximation to derive an analytical 

rule describing the game and network conditions under which cooperation can spread. 
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3. Results 

3.1. Numerical results 

Simulations begin with a population containing multiple strategies and run until one of the 

strategies has fixated (i.e. eliminated its competitor(s)). The fixation probability of a strategy is 

estimated based on the proportion of 8000 simulations which end with that strategy fixating. I 

focus primarily on the case of invasion, where one “mutant” is introduced into a homogeneous 

population (Fig. 3a, 3b, 4a-d). I am interested not only in the conditions under which cooperators 

might invade a population of defectors (viability) but also the conditions under which a 

population of cooperators might fend of invading defectors (stability). Both cooperative and non-

cooperative equilibria can be found in any society, so understanding how cooperation is 

maintained is just as important as understanding how it is initially fostered. And as the results 

show (Fig. 3, 4), viability and stability are not symmetric since cooperators rely on assortment 

for their fitness advantage. 

To run one of these simulations, I must specify network parameters, N, g, s, and o, game 

parameters, b and c, and the selection strength, w. I limit the N to 200 and g and s to 8 in my 

main numerical analysis (Fig. 4), and my analytical results suggest little generality is lost in this 

specification. I vary the overlap degree, o, from 0 to 8 by steps of 2 to analyze the evolutionary 

dynamics under various social contexts. (The step size is constrained by the network generation 

algorithm.) I vary the relative gains from cooperation, 𝑏𝑏/𝑐𝑐, around a median value of 8 to 

capture the interactive effects of network structure and game payoffs on the evolutionary 

dynamics. Earlier findings by Ohtsuki et al. (2006, 2007) as well as my own numerical and 

analytical results suggest that the boundary of the evolutionary feasibility of cooperation lies in 

this region of the game-network parameter space (where 𝑏𝑏/𝑐𝑐 is close to g and s). I vary 𝑏𝑏/𝑐𝑐 by 

varying b and holding c constant at 𝑐𝑐 = 1. Multiplying both b and c by a scalar alters the payoff 

of every outcome by the same factor. Scaling the payoffs up or down in this manner is equivalent 

to altering the strength of selection (w). I conduct my primary analyses under conditions of weak 

selection (𝑤𝑤 = 0.1) in accordance with much of the theoretical literature on the evolution of 

cooperation on networks (Allen et al., 2017; Allen & Nowak, 2014; Dong et al., 2023; Ohtsuki et 

al., 2006, 2007; Tarnita et al., 2009). In Appendix C, I discuss selection strength more 

extensively and analyze its impact on the evolution of cooperation (see Figures C.1 and C.2). 
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The fixation probability estimates of the evolutionary game simulations indicate that whereas 

unconditional cooperation relies on a highly social interaction context to evolve, empathy 

(cooperation conditional on social proximity) can persist and spread when this sociality is low as 

long as the relative gains from cooperation are sufficiently large (Fig. 4). In other words, the 

numerical results suggest that conditioning cooperation on social proximity is adaptive when 

interactions occur among both familiars and strangers. 

A strategy is selected for if its fixation probability is larger than that of a neutral mutant (1/𝑁𝑁). 

In Figures 3 and 4, fixation probability estimates for invading cooperators larger than (smaller 

than) 1/𝑁𝑁 are colored blue (red). Similarly, fixation probability estimates for resident 

cooperators larger than (smaller than) 1 − (1/𝑁𝑁) are colored blue (red). Thus, blue (red) cells 

indicate game and network conditions under which cooperation is selected for (against). Note 

that in the absence of sociality (o = 0), empathizers are no different from defectors, so their 

fixation probability estimates hover around those of neutral mutants, and in the context of full 

sociality (o = g), empathizers are no different than unconditional cooperators, so their fixation 

probability estimates align. 

Figures 3a and 3b report the fixation probability estimates for empathizers with different 

empathic ranges (x = 1, 2, 3, 4, 5) competing against defectors in the context of partial sociality 

(𝑜𝑜/𝑔𝑔 = 0.5) when the gains from cooperation are slightly larger than the social and economic 

degrees (𝑏𝑏/𝑐𝑐 = 6 > 𝑔𝑔 = 𝑠𝑠 = 4). These conditions select for all empathy variants with 𝑥𝑥 ≤ 3. 

More generally, fitness decreases with empathic range. Figure 3c reports the fixation probability 

estimates for simulations run under the same game and network conditions but starting from a 

uniform distribution of all seven strategies from 𝑥𝑥 = 0 (defectors) to 𝑥𝑥 = 6 (unconditional 

cooperators. In this environment of many competing strategies, as in the case of a single 

competing strategy, discriminatory empathizers (𝑥𝑥 = 1, 2) are selected for. 
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Fig. 3. The evolutionary advantage of conditioning cooperation on social proximity. N = 100, g = s = 4, o = 
2, w = 0.1, b = 6, c = 1, 8000 simulations per estimate. In the case of partial sociality (o/g = 0.5), 
evolutionary game simulations suggest that conditioning cooperation on social proximity is adaptive. 
Fitness appears to decrease with empathic range. a, The fixation probability estimates for empathizers with 
different ranges introduced into a population of defectors (viability). b, The fixation probability estimates 
for resident empathizers with different ranges fending off invading defectors (stability). Empathizers with a 
range of 1 cooperate only with social neighbors whereas empathizers with a range of 5 cooperate with 
almost everyone. If a cell is blue (red), the empathizers are selected for (against). c, The fixation probability 
estimates for empathizers with ranges 0 (defectors) through 6 (unconditional cooperators) starting from a 
uniform distribution of all seven strategies, 𝑥𝑥𝑖𝑖~𝒰𝒰(0,6). Strategies with fixation probabilities above (below) 
the red line—marking the fixation probability of a neutral mutant—are selected for (against). 

Figure 4 reports the fixation probability estimates for unconditional cooperators (𝑥𝑥 ≥

diameter(𝑆𝑆)) and empathizers (𝑥𝑥 = 1) competing against defectors under various conditions of 

sociality and gains from cooperation. The fitness of unconditional cooperators increases with 

gains from cooperation as well as sociality. Empathizer fitness increases with gains from 

cooperation, but its relation to social context is more complex. In the context of partial sociality 

(𝑜𝑜/𝑔𝑔 > 0) and when the gains from cooperation exceed the degrees of the social and economic 

layers (𝑏𝑏/𝑐𝑐 > 8 = 𝑠𝑠 = 𝑔𝑔), empathizers are selected for (viability fixation probability estimates 

exceed 1/𝑁𝑁, and stability fixation probability estimates exceed 1 − (1/𝑁𝑁)). Below this 𝑏𝑏/𝑐𝑐 

threshold, empathizers are selected against. Viability fixation probability estimates increase with 

sociality when 𝑏𝑏/𝑐𝑐 > 8,  but stability fixation probability estimates decrease with sociality when 

𝑏𝑏/𝑐𝑐 < 8. The explanation is this: as sociality increases, empathizers cooperate more, and when 

the gains from cooperation are sufficiently high, this increases their average fitness relative to 

competing defectors, but when the gains from cooperation are low, this decreases their average 

fitness relative to competing defectors. 
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Fig. 4. The impact of social context on the evolution of cooperation. N = 200, g = s = 8, w = 0.1, c = 1, 
8000 simulations per estimate. Unconditional cooperation relies on high sociality and gains from 
cooperation to evolve, but discriminatory empathy can persist and spread even when sociality is low as 
long as the gains from cooperation are sufficiently large. a, b, The fixation probability estimates for 
cooperators invading a population of defectors (viability). c, d, The fixation probability estimates for 
resident cooperators fending off invading defectors (stability). a, c, The estimates for unconditional 
cooperators. b, d, The estimates for empathizers who cooperate only with social neighbors. If a cell is blue 
(red), the cooperators are selected for (against). 
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3.2. Analytical results 

In their 2007 paper, Ohtsuki, Nowak, and Pacheco apply the technique of pair approximation to 

an evolutionary game model on a multilayer network and find that unconditional cooperation is 

favored by selection when 𝑏𝑏
𝑐𝑐

>  𝑔𝑔∙𝑠𝑠
𝑜𝑜

. I apply this technique to replicate this rule for the evolution 

of unconditional cooperation and to derive a similar rule for the evolution of empathy: 𝑏𝑏/𝑐𝑐 > 𝑠𝑠. 

This analytical result aligns with the numerical results. Both suggest that discriminating on the 

basis of social distance mitigates the damage low sociality inflicts on the evolutionary feasibility 

of cooperation. 

Pair approximation comprises a method for approximating evolutionary dynamics and 

equilibrium conditions on networks by focusing on the dynamics as they occur among node pairs 

(Baalen, 2000). This abstraction away from the complex geometry of the full network makes 

possible the derivation of differential equations that describe the essential dynamics of the 

model. In the context of the model in this paper, pair approximation shows that when selection 

strength is weak (𝑤𝑤 ≪ 1), the local density of strategies on the network equilibrates faster than 

the global density of strategies. The strategy with the higher fitness in this local strategy density 

equilibrium is likely to prevail in the simulation. 

Let 𝑝𝑝𝐴𝐴 be the prevalence of strategy A in the entire population, and let 𝑞𝑞𝐴𝐴|𝐵𝐵
(∗)  be the probability 

that any neighbor on layer ∗ of a B-strategy node is an A-strategy node (i.e. 𝑞𝑞𝐴𝐴|𝐵𝐵
(∗)  represents the 

local density of A around B in the ∗ layer). Then, in a population of competing A and B 

strategies, the following identities always hold: 

𝑞𝑞𝐴𝐴|𝐴𝐴
(𝐺𝐺−𝑂𝑂) = 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝐺𝐺−𝑂𝑂) = 𝑝𝑝𝐴𝐴 (4) 

𝑞𝑞∗|∗
(𝑂𝑂) = 𝑞𝑞∗|∗

(𝑆𝑆) (5) 

On the network of edges belonging only to the economic layer (G – O), the probability of a 

neighbor of either strategy being an A player is equal to the global prevalence of that strategy. 

This is because these non-social ties are unrelated to strategy transmission, so no assortment 

arises on G – O. The local strategy densities on the social (S) and overlap (O) layers are identical 

since the overlap layer is a subset of the social layer. 



15 
 

In the case of weak selection, 𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆)  equilibrates before 𝑝𝑝𝐴𝐴 does. This local strategy density 

equilibrium approximates the state of the population in the simulations while 𝑝𝑝𝐴𝐴 ∈ �
1
𝑁𝑁

, 1 − 1
𝑁𝑁
�. In 

this equilibrium, the following relationship holds (Ohtsuki et al., 2006, Supp. Eq. 17): 

𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆) − 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑆𝑆) =
1

𝑠𝑠 − 1
(6) 

In words, A nodes are more likely than B nodes to be social neighbors with other A nodes. This 

strategy homophily (i.e. clustering of strategies) arises on the social layer because social 

neighbors may, at some point, have acquired their current strategies from one another. The 

mathematical derivation can be found in Appendix D. 

At this point, rather than estimating and comparing fixation probabilities as Ohtsuki and his 

coauthors do (2006, 2007), I employ a shortcut I developed: I compare the fitness of the 

strategies competing for emulation in the local strategy density equilibrium. In Appendix D, I 

present a proof of the validity of this approach. 

To compare the fitness of two strategies competing for emulation in this equilibrium, I must 

compare their payoffs, and to compare their payoffs, I must compare their expected economic 

neighborhoods. But since 𝑞𝑞𝐴𝐴|𝐴𝐴
(𝐺𝐺−𝑂𝑂) = 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝐺𝐺−𝑂𝑂) = 𝑝𝑝𝐴𝐴, the difference in economic neighborhoods is 

the same as the difference in overlap neighborhoods. Let 𝐴𝐴𝐴𝐴 be the number of A nodes in the 

overlap neighborhood of an A node and 𝐴𝐴𝐵𝐵 be the number of A nodes in the overlap 

neighborhood of a B node. From the local strategy density equilibrium relationship (Appendix 

D), I find that 

𝐸𝐸(𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐵𝐵) =
𝑜𝑜
𝑠𝑠

(7) 

Thus, the expected difference in total round payoffs between an unconditional cooperator (C) 

and a defector (D) competing for emulation is given by 

𝐸𝐸(Π𝐶𝐶 − Π𝐷𝐷) = (𝑏𝑏 ∙ 𝐶𝐶𝐶𝐶 − 𝑐𝑐 ∙ 𝑔𝑔) − (𝑏𝑏 ∙ 𝐶𝐶𝐷𝐷) =
𝑏𝑏 ∙ 𝑜𝑜
𝑠𝑠

− 𝑐𝑐 ∙ 𝑔𝑔 (8) 

which is positive when 
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𝑏𝑏
𝑐𝑐

>
𝑔𝑔 ∙ 𝑠𝑠
𝑜𝑜

(9) 

This inequality—originally derived by Ohtsuki et al. (2007)—specifies the conditions of 

sociality and gains from cooperation under which unconditional cooperation is selected for. 

In the case of empathizers who cooperate only with social neighbors (𝑥𝑥 = 1), the expected 

difference in total round payoffs between an empathizer (M) and a defector (D) competing for 

emulation is given by 

𝐸𝐸(Π𝑀𝑀 − Π𝐷𝐷) = (𝑏𝑏 ∙ 𝑀𝑀𝑀𝑀 − 𝑐𝑐 ∙ 𝑜𝑜) − (𝑏𝑏 ∙ 𝑀𝑀𝐷𝐷) =
𝑏𝑏 ∙ 𝑜𝑜
𝑠𝑠

− 𝑐𝑐 ∙ 𝑜𝑜 (10) 

which is positive when 

𝑏𝑏
𝑐𝑐

> 𝑠𝑠 (11) 

This inequality specifies that empathy is selected for as long as the gains from cooperation 

exceed the degree of the social layer. 

The numerical estimates from the simulations corroborate the analytical rules for both 

unconditional cooperators and empathizers. As shown in Figure 4, in the simulations where 𝑔𝑔 =

𝑠𝑠 = 8, unconditional cooperators are only selected for in the upper right corner where 𝑏𝑏/𝑐𝑐 >

64/𝑜𝑜 whereas empathizers are selected for whenever 𝑏𝑏/𝑐𝑐 > 8. 

The evolutionary success of any strategy in the simulations depends firstly on its capacity to 

duplicate before being eliminated (Fig. C.2) and secondly on its relative fitness in the local 

strategy density equilibrium. Under weak selection, cooperators invading a population of 

defectors may survive to the local density equilibrium; then, if the network and game conditions 

satisfy the relevant analytical rule, the invading cooperators reap a higher average payoff and are 

therefore likely to spread. Similarly, under weak selection, defectors invading a population of 

cooperators may survive to the local density equilibrium; then, if the network and game 

conditions satisfy the relevant analytical rule, the resident cooperators reap a higher average 

payoff and are therefore likely to fend off the defectors.  
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4. Discussion 

In this paper, I developed an evolutionary game model on a multilayer network to explore the 

impact of social context on the evolution of cooperation. The main results are intuitive: when we 

interact with both familiars and strangers, it is adaptive to cooperate with the former but not the 

latter. Low sociality impedes the evolution of unconditional cooperation but not the evolution of 

socially-contingent cooperation—i.e. empathy. However, if empathy spreads to the whole 

population (i.e. fixates), the prevalence of cooperative behavior depends directly on the degree of 

sociality. 

Empathy, as I have defined it, combines the evolutionary tactics of discrimination and assortment 

to concentrate the benefits of cooperation among cooperators: empathizers cooperate with those 

who, due to the strategy transmission process, are more likely than chance to also be 

empathizers. The limiting factor then becomes the degree of the social layer which dictates the 

“relatedness” of overlap neighbors—i.e. the likelihood they share the same strategy. This 

interpretation is embodied in the analytical rule for the evolution of empathy, which can be 

rewritten as (1/𝑠𝑠)𝑏𝑏 > 𝑐𝑐, such that 1/𝑠𝑠 corresponds with the relatedness coefficient of 

Hamilton’s rule (Bowles & Gintis, 2011; Hamilton, 1964; Smaldino, 2023). 

These results illustrate a basic logic underlying the evolution of empathy—a logic that does not 

depend on the model’s assumptions of static, homogeneous networks, weak selection, or death-

birth updating. If behaviors spread among familiars (via biological reproduction or social 

learning), then familiarity functions as a proxy for behavioral relatedness. Thus, conditioning 

cooperation on familiarity concentrates the benefits of cooperation among fellow cooperators, 

allowing this behavior to persist and spread. 

Studies of empathy and socially-contingent cooperation have most often explained the evolution 

of this form of conditional cooperation with reference to Hamilton’s theory of kin selection 

(Hamilton, 1964) and Trivers’ theory of reciprocal altruism (Trivers, 1971), since social 

proximity may coincide with genetic relatedness and interaction duration (Batson, 2010; 

Binmore, 2005; de Waal, 2009; de Waal, 2008; de Waal & Preston, 2017; Osiński, 2009; Rachlin 

& Jones, 2008). If we interpret the dynamics and results of the model in the context of genetic 

evolution, then the social layer, where the strategies spread, is a kin network, and social distance 

corresponds to genetic relatedness. The strategy of empathy in this case is identical to 
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discriminatory kin-based altruism: cooperate with close kin; defect with others. And this strategy 

is an evolutionary improvement over unconditional cooperation when individuals interact with 

both kin and non-kin. If, instead, we interpret the dynamics and results of the model in terms of 

cultural evolution, then social distance corresponds to cultural rather than genetic relatedness, 

and the evolutionary mechanism illustrated is more closely related to parochial altruism (Bowles 

& Gintis, 2011) than kin selection. Both genetic and cultural interpretations of the model align 

with the evidence that relational closeness correlates with cooperation between kith and between 

kin (Rachlin & Jones, 2008). These dual interpretations also align with the evidence that 

individuals’ cooperative proclivities are products of both heredity and socialization (Eisenberg et 

al., 2013; Kosse et al., 2020). 

The model suggests that modern human ecologies may impact cooperative behavior through two 

distinct channels: first, through the context-dependent expression of our evolutionary inheritance, 

and second, through cultural evolution itself. Since genetic evolution occurs at a much slower 

rate than cultural evolution (due to the different means of transmission), our genetic inheritance 

may reflect ancient human ecologies while our cultural inheritance may reflect modern human 

ecologies (Boyd & Richerson, 2005). Consequently, our innate behaviors may be maladaptive to 

large-scale, anonymous market societies. Whereas empathy may effectively foster cooperation in 

big game hunts and childcare, it is poorly suited to address climate change and international 

conflict. The effects of social context on cultural evolution may also hinder the resolution of 

modern cooperation problems. The results of the model suggest that asocial human ecologies 

could erode the evolutionary feasibility of unconditional cooperation and select for non-

cooperative behavior (either in the form of unconditional defection or vestigial empathy). 

The insights the model provides into the behavioral ecology of cooperation suggest cooperation 

problems might be solved either by altering individual incentives to align self-interest with 

collective welfare or by changing the social context to better select for and provoke cooperative 

behavior. The most effective solution depends on the nature of the specific cooperation problem. 

If the context is unavoidably asocial, the incentive approach might be justified by the reality of 

self-interested actors. This case is exemplified by a carbon tax implemented to mitigate climate 

change. Here, the tax brings the cost individuals impose on the global population back into their 

own self-interested calculation, thus relieving the need for any internally motivated cooperation. 
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In other contexts, it may be possible to increase the sociality of interactions, thus provoking more 

cooperation. This case is exemplified by the management of local resource commons (Dietz et 

al., 2003; Ostrom, 2009; Pretty, 2003). Here, the delegation of commons governance to local 

communities that depend on the resource may function well on the basis of empathy without any 

top-down policy solution tailored to self-interested actors (Bowles & Gintis, 2007; Ostrom, 

1990). 

More broadly, the model developed here exemplifies how the mathematical tools of evolutionary 

game theory and multilayer networks lend themselves to modelling the evolution of context-

dependent behaviors. Such theoretical models provide important insights into the nuance and 

dynamism of human behavioral ecology (Gonzalez & Rice, 2024), which could prove key to 

navigating the complex social and environmental problems we face today (Schill et al., 2019). 

 

Code availability 

The code for running the evolutionary game simulations and replicating the figures can be found 
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Appendix A. Multilayer network generation 

The Watts-Strogatz model (Watts & Strogatz, 1998) specifies an algorithm capable of generating 

networks with small-world properties (i.e. small distances and high transitivity). By modifying 

the rewiring method to preserve degree distribution, this same algorithm can produce random 

regular networks as follows: 
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1. Construct a circulant network with the desired even degree. 

2. Arrange the edges in a list and for each edge, designate one adjacent node as the 

“tail” and the other as the “head.” 

3. Rewire each edge in the list by selecting an edge at random and swapping their “tail” 

nodes (adding as a constraint the condition that no self-loops or duplicate edges are 

created). If a random subset of the edges are rewired such that some of the initial 

circulant structure remains, then the resulting network will have the small-world 

properties of short distances and high transitivity. The more edges rewired, the lower 

the transitivity of the resulting network. 

To extend this algorithm to generate a multilayer network with the given parameters of N, s, g, 

and o, (where s, g, and o are even and 𝑜𝑜 ≤ min (𝑔𝑔, 𝑠𝑠)), I begin with a circulant network of 

degree 𝑠𝑠 + 𝑔𝑔 − 𝑜𝑜. After rewiring, this network (𝑆𝑆′ ∪ 𝐺𝐺′) will become the union of the social and 

economic layers (𝑆𝑆 ∪ 𝐺𝐺). I partition the edges of this union circulant network into three disjoint 

subsets: the social sans overlap layer (𝑆𝑆′ − 𝑂𝑂′), the economic sans overlap layer (𝐺𝐺′ − 𝑂𝑂′), and 

the overlap layer (𝑂𝑂′). I then rewire the networks to obtain 𝑆𝑆 − 𝑂𝑂 = 𝑅𝑅(𝑆𝑆′ − 𝑂𝑂′), 𝐺𝐺 − 𝑂𝑂 =

𝑅𝑅(𝐺𝐺′ − 𝑂𝑂′), and 𝑂𝑂 = 𝑅𝑅(𝑂𝑂′), swapping only edges within the same subset while also avoiding 

the creation duplicate edges in the superset union network. The original edge is included in the 

set of potential rewiring pairs, so with the same probability as rewiring with any other given 

edge, the edge is not rewired. Also, if no pair rewiring is possible that does not create duplicate 

edges, then the original edge is kept. This process is illustrated in Figure 1 for N = 20, s = g = 4, 

and o = 2. When all edges have been rewired, the social layer is obtained by adding the rewired 

social sans overlap edge set to the rewired overlap edge set (𝑆𝑆 = (𝑆𝑆 − 𝑂𝑂) + 𝑂𝑂), and the 

economic layer is obtained by adding the rewired economic sans overlap edge set to the rewired 

overlap edge set (𝐺𝐺 = (𝐺𝐺 − 𝑂𝑂) + 𝑂𝑂). 

This algorithm can be modified to generate a three-layer multilayer network with regular, 

controlled overlap between each layer. In this case, the edge set of the union circulant network 

must be partitioned into seven disjoint subsets, one for layer 1 alone, one for layer 2 alone, one 

for layer 3 alone, one for layer 1 and 2 without layer 3, one for layer 1 and 3 without layer 2, one 

for layer 2 and 3 without layer 1, and one for the overlap of all three layers, each of which must 

be rewired separately and without creating duplicate edges in the edge superset. Accordingly, 

with more than three layers, the process becomes even more unwieldy. 
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Appendix B. Utility function specification 

Let i and j be nodes interacting in the game described in Figure 2. If i is selfish, she will defect 

since 𝑏𝑏 > 𝑏𝑏 − 𝑐𝑐 and 0 > −𝑐𝑐. If i cares sufficiently about j, she will cooperate since 𝑏𝑏 > 𝑐𝑐. These 

motivations can be expressed in terms of a utility function incorporating the payoffs of i and j: 

𝑢𝑢𝑖𝑖(𝜋𝜋𝑖𝑖,𝑗𝑗 ,𝜋𝜋𝑗𝑗,𝑖𝑖). To operationalize empathy, I specify the other-regarding component of i’s utility 

function as a hyperbolic function of the social distance between i and j in accordance with the 

empirical findings of the social discounting literature (Jones, 2022; Jones & Rachlin, 2006): 

𝑢𝑢𝑖𝑖 = 𝜋𝜋𝑖𝑖,𝑗𝑗 +
𝑎𝑎𝑖𝑖𝜋𝜋𝑗𝑗,𝑖𝑖

1 + 𝛿𝛿𝑖𝑖�𝑑𝑑𝑖𝑖,𝑗𝑗 − 1�
(𝐵𝐵. 1) 

where 𝜋𝜋𝑖𝑖,𝑗𝑗 represents the game payoff of player i interacting with player j, 𝑑𝑑𝑖𝑖,𝑗𝑗 is the social 

distance between i and j, 𝑎𝑎𝑖𝑖 represents how much i values the payoffs of a social neighbor 

relative to her own, and 𝛿𝛿𝑖𝑖 is the social discount factor which specifies how quickly empathy 

decays with social distance. 

Individual i will thus cooperate with j as long as  

𝑎𝑎𝑖𝑖𝑏𝑏
1 + 𝛿𝛿𝑖𝑖�𝑑𝑑𝑖𝑖,𝑗𝑗 − 1�

> 𝑐𝑐 (𝐵𝐵. 2) 

Individuals for whom 𝑎𝑎𝑖𝑖 < 𝑐𝑐/𝑏𝑏 will defect unconditionally. Individuals for whom 𝑎𝑎𝑖𝑖 > 𝑐𝑐/𝑏𝑏 and 

𝛿𝛿𝑖𝑖 = 0 will cooperate unconditionally. And individuals for whom 𝑎𝑎𝑖𝑖 > 𝑐𝑐
𝑏𝑏
 and 𝛿𝛿𝑖𝑖 > 0 will 

cooperate conditional on sufficient social proximity. Specifically, these empathizers cooperate 

with all j for whom 𝑑𝑑𝑖𝑖,𝑗𝑗 < 𝑎𝑎𝑖𝑖𝑏𝑏−𝑐𝑐
𝑐𝑐𝛿𝛿𝑖𝑖

+ 1. Thus, this utility function produces a behavioral strategy 

that can be alternatively defined by the single discrete empathic range variable, 𝑥𝑥𝑖𝑖 ∈ ℕ, 

indicating that i will cooperate with all j for whom 𝑑𝑑𝑖𝑖,𝑗𝑗 ≤ 𝑥𝑥𝑖𝑖. (I define 𝑥𝑥𝑖𝑖 based on the weak 

inequality for intuitiveness of interpretation.) Figure B.1 illustrates graphically this derivation of 

𝑥𝑥𝑖𝑖 from 𝑏𝑏, 𝑐𝑐, 𝑎𝑎𝑖𝑖, and 𝛿𝛿𝑖𝑖. The strategy defined by 𝑥𝑥𝑖𝑖 could also be obtained from alternative utility 

function specifications. For example, the specification 𝑢𝑢𝑖𝑖 = 𝜋𝜋𝑖𝑖 + 𝑎𝑎𝑖𝑖𝜋𝜋𝑗𝑗
𝑑𝑑𝑖𝑖,𝑗𝑗 − 1

 (which reflects Goeree et 

al.’s “1/d Law of Giving” (2010)) yields the same discrete empathic range trait 𝑥𝑥𝑖𝑖. The 
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evolutionary dynamics in this paper, however, depend only on the empathic range trait, so my 

results are agnostic with regard to the choice of utility function specification. 

 
Fig. B.1. Social discounting utility function specification. If the socially discounted benefit of cooperation 
(which declines with social distance) exceeds the cost of cooperation, the empathizer will cooperate. This 
means that given 𝑎𝑎𝑖𝑖 and 𝛿𝛿𝑖𝑖, i will cooperate with every economic neighbor within a certain distance in the 
social layer and defect with all others. In the example shown in this figure, i will cooperate only with 
economic neighbors who are 1 or 2 edges away in the social layer. This behavioral strategy can be 
represented as a discrete empathic range: 𝑥𝑥𝑖𝑖 = 2. 

 
Appendix C. Selection strength 

C.1. Conceptual discussion 

In evolutionary models, weak selection allows a single cooperator to invade a population of 

defectors. Isolated cooperators necessarily have a lower payoff than the defectors they are 

competing against, so they must initially spread stochastically against the gradient of selection to 

form a cluster of cooperators, which can then compete with defectors in terms of fitness. How 

realistic, then, is this assumption? 

Selection strength likely differs across the realms of cultural and genetic evolution. In the case of 

genetic evolution, fitness refers to an organism’s propensity to survive and reproduce and thus 

pass on their genetic traits. Here, fitness is a product of a multitude of interactions of which the 

trait-relevant game is only one, so weak selection is justified.  
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In the case of cultural evolution, since enculturation is not limited to vertical transmission 

following biological reproduction, fitness applies to the traits carried by the organism rather than 

the organism itself. The propensity of a socially learned behavior to persist and spread need not 

be directly correlated to the overall material success of the trait-bearer. The latter could be the 

case if the spread of the cultural trait is achieved by means of power and wealth (e.g. control of 

the media, intentional indoctrination, conquest and replacement). But cultural traits could also be 

selected for by voluntary preferential adoption, in which case, the fitness of the trait in the 

individual is likely a function of their payoffs from trait-relevant interactions. 

 

C.2. Numerical results 

Figure C.1 reports the fixation probability estimates for unconditional cooperators and 

empathizers (𝑥𝑥 = 1) competing against defectors under various conditions of sociality (𝑜𝑜/𝑔𝑔) 

and selection strength (w). I hold the gains from cooperation at a constant level sufficient to 

promote some evolutionary success of cooperation (𝑏𝑏/𝑐𝑐 = 12). The viability fixation probability 

estimates decrease with selection strength for unconditional cooperators and for empathizers 

when sociality is high (in which case they act like unconditional cooperators). On the other hand, 

no clear relationship exists between selection strength and the stability fixation probabilities 

estimates for resident cooperators (either unconditional cooperators or empathizers). 

The detrimental effect of selection strength on the evolutionary viability of invading cooperators 

can be explained with reference to the probability of those invaders forming a cluster. As 

selection strength increases, invading cooperators are less likely to duplicate before they are 

eliminated, and for empathizers, this effect intensifies with increasing sociality (Fig. C.2a). The 

effect of selection strength on the duplication probability of unconditional cooperators is not 

mediated by sociality since their behavior is not conditioned on it. In the case of the evolutionary 

stability of resident cooperators, however, cluster formation is not a challenge since the initial 

conditions are characterized by one massive cooperator cluster. Higher selection strength still 

increases the chance of the invading defector duplicating, but the effect is miniscule compared to 

the case of cooperator invasion (Fig. C.2b). In both cases, when payoffs cease to matter (due to a 

selection strength of zero or when empathizers are indistinguishable from defectors), the 

probability that an invading strategy duplicates before it can be eliminated becomes 0.5. 
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Fig. C.1. The impact of selection strength on the evolution of cooperation. N = 200, g = s = 8, b = 12, c = 1, 
8000 simulations per estimate. In the case of cooperator invasion (a. and b.), the evolutionary viability of 
unconditional cooperation appears to decrease with increasing selection strength. This effect also holds for 
empathizers when sociality is high. In the case of defector invasion (c. and d.), the evolutionary stability of 
cooperation appears to be unrelated to selection strength. If a cell is blue (red), the cooperators are selected 
for (against). 
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Fig. C.2. The impact of selection strength on initial trait proliferation. N = ∞, h = g = 8, b = 12, c = 1. a. As 
selection strength increases, invading cooperators are less likely to duplicate before they are eliminated, 
and for empathizers, this effect intensifies with increasing sociality. b. In the case of resident cooperators, 
the probability that the invading defector is eliminated before it can duplicate also decreases with selection 
strength, but the effect is miniscule. In both cases, when payoffs cease to matter (due to a selection strength 
of zero or when empathizers are indistinguishable from defectors), the probability that an invading strategy 
duplicates before it can be eliminated becomes 0.5. 

 

C.3. Calculating the probability of invader duplication 

The probability that event X occurs before event Y, given that X occurs each period with 

probability x and Y with the probability y, is 𝑥𝑥
𝑥𝑥+𝑦𝑦

. Using the fitness equation and adding c to all 

payoffs in Figure 2 to avoid negative probabilities (as is done in the simulations), we can 

calculate these duplication probabilities. For simplicity, I assume N to be arbitrarily large (if I 

keep a finite N in the calculations, the results don’t change much, but the functions become even 

more cumbersome). For unconditional cooperators, the probability in each period that the 

invader duplicates is 
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�
𝑠𝑠
𝑁𝑁
�

𝑓𝑓𝐶𝐶
𝑓𝑓𝐶𝐶 + (𝑠𝑠 − 1)𝑓𝑓𝐷𝐷

= �
𝑠𝑠
𝑁𝑁
�

1 −  𝑤𝑤
𝑠𝑠(1 − 𝑤𝑤) + (𝑠𝑠 − 1)𝑤𝑤𝑤𝑤𝑤𝑤

(𝐶𝐶. 1) 

And the probability in each period that the invader is eliminated is 1
𝑁𝑁

. The probability then that 

the unconditional cooperator duplicates before it can be eliminated is  

𝑠𝑠𝑓𝑓𝐶𝐶
(𝑠𝑠 + 1)𝑓𝑓𝐶𝐶 + (𝑠𝑠 − 1)𝑓𝑓𝐷𝐷

=
𝑠𝑠(1 − 𝑤𝑤)

2𝑠𝑠(1 − 𝑤𝑤) + (𝑠𝑠 − 1)𝑤𝑤𝑤𝑤𝑤𝑤
(𝐶𝐶. 2) 

For empathizers, the probability in each period that the invader duplicates is 

�
𝑠𝑠
𝑁𝑁
�

𝑓𝑓𝐸𝐸
𝑓𝑓𝐸𝐸 + (𝑠𝑠 − 1)𝑓𝑓𝐷𝐷

= �
𝑠𝑠
𝑁𝑁
�

1 −  𝑤𝑤 + 𝑤𝑤(𝑔𝑔 − 𝑜𝑜)𝑐𝑐
𝑠𝑠(1 − 𝑤𝑤 + 𝑤𝑤𝑤𝑤𝑤𝑤) − 𝑤𝑤𝑤𝑤𝑤𝑤

(𝐶𝐶. 3) 

And the probability in each period that the invader is eliminated is 1
𝑁𝑁

. The probability then that 

the empathizer duplicates before it can be eliminated is  

𝑠𝑠𝑓𝑓𝐸𝐸
(𝑠𝑠 + 1)𝑓𝑓𝐸𝐸 + (𝑠𝑠 − 1)𝑓𝑓𝐷𝐷

=
𝑠𝑠(1 − 𝑤𝑤 + 𝑤𝑤(𝑔𝑔 − 𝑜𝑜)𝑐𝑐)

2𝑠𝑠(1 −  𝑤𝑤 + 𝑤𝑤𝑤𝑤𝑤𝑤) − 𝑤𝑤𝑤𝑤𝑤𝑤(𝑠𝑠 + 1)
(𝐶𝐶. 4) 

These duplication probabilities are plotted in Figure C.2a. Note that if there is no difference in 

fitness (if the payoffs are equal or if w = 0), the duplication probabilities simplify to  

𝑠𝑠𝑠𝑠
(𝑠𝑠 + 1)𝑓𝑓 + (𝑠𝑠 − 1)𝑓𝑓

=
1
2

(𝐶𝐶. 5) 

Note also that  

𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝑠𝑠𝑓𝑓𝐸𝐸
(𝑠𝑠 + 1)𝑓𝑓𝐸𝐸 + (𝑠𝑠 − 1)𝑓𝑓𝐷𝐷

� =
−𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠 − 1)𝑓𝑓𝐷𝐷

[(𝑠𝑠 + 1)𝑓𝑓𝐸𝐸 + (𝑠𝑠 − 1)𝑓𝑓𝐷𝐷]2 < 0 (𝐶𝐶. 6) 

i.e. duplication probability declines with overlap. 

Using the same tools and assumptions, we can calculate probability that invading defectors are 

eliminated before they can duplicate. In the case of unconditional cooperators, the probability in 

each period that the defector is eliminated is 1/𝑁𝑁, and the probability in each period that the 

defector duplicates is 

�
𝑠𝑠
𝑁𝑁
�

1 − 𝑤𝑤 + 𝑤𝑤𝑤𝑤(𝑏𝑏 + 𝑐𝑐)
𝑠𝑠(1 −  𝑤𝑤) + 𝑤𝑤𝑤𝑤(𝑏𝑏 + 𝑐𝑐) + (𝑠𝑠 − 1)𝑤𝑤𝑤𝑤𝑤𝑤

(𝐶𝐶. 7) 
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The probability then that the defector is eliminated before it can duplicate is 

1 −
𝑠𝑠�1 −𝑤𝑤 + 𝑤𝑤𝑤𝑤(𝑏𝑏 + 𝑐𝑐)�

2𝑠𝑠(1 −𝑤𝑤) + (𝑠𝑠 + 1)𝑤𝑤𝑤𝑤(𝑏𝑏 + 𝑐𝑐) + (𝑠𝑠 − 1)𝑤𝑤𝑤𝑤𝑤𝑤
(𝐶𝐶. 8) 

In the case of empathizers, the probability in each period that the defector is eliminated is 1
𝑁𝑁

, and 

the probability in each period that the invader duplicates is 

�
𝑠𝑠
𝑁𝑁
�

1 − 𝑤𝑤 + 𝑤𝑤(𝑜𝑜𝑜𝑜 + 𝑔𝑔𝑔𝑔)
𝑠𝑠(1 −  𝑤𝑤 + 𝑤𝑤𝑤𝑤𝑤𝑤) + 𝑤𝑤𝑤𝑤(𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑠𝑠 + 𝑜𝑜)

(𝐶𝐶. 9) 

The probability then that the defector is eliminated before it can duplicate is 

1 −
𝑠𝑠�1 − 𝑤𝑤 + 𝑤𝑤(𝑜𝑜𝑜𝑜 + 𝑔𝑔𝑔𝑔)�

2𝑠𝑠(1 −  𝑤𝑤 + 𝑤𝑤𝑤𝑤𝑤𝑤) + 𝑤𝑤𝑤𝑤(2𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑠𝑠 + 𝑜𝑜)
(𝐶𝐶. 10) 

These duplication probabilities are plotted in Figure C.2b. 

 
Appendix D. Derivation of the analytical rule 

In this section, I derive the local density equilibrium conditions and formulate a proof 

demonstrating the logic of the shortcut I employ to obtain the analytical rule for the evolution of 

empathy. 

As before, let 𝑝𝑝𝐴𝐴 be the prevalence of strategy A in the entire population, and let 𝑞𝑞𝐴𝐴|𝐵𝐵
(∗)  be the 

probability that any ∗ neighbor of a B-strategy node is an A-strategy node. Also, let 𝑝𝑝𝐴𝐴𝐴𝐴
(∗) be the 

prevalence of AA strategy pairs among all 𝑁𝑁𝑁𝑁/2 edges in any layer ∗ of k degree. Then, in a 

population of competing A and B strategies, the following identities always hold: 

𝑝𝑝𝐴𝐴 + 𝑝𝑝𝐵𝐵 = 1 (𝐷𝐷. 1) 

𝑝𝑝𝐴𝐴𝐴𝐴
(∗) + 𝑝𝑝𝐴𝐴𝐴𝐴

(∗) + 𝑝𝑝𝐵𝐵𝐵𝐵
(∗) = 1 (𝐷𝐷. 2) 

𝑝𝑝𝐴𝐴𝐴𝐴
(∗) = 𝑝𝑝𝐵𝐵𝐵𝐵

(∗) (𝐷𝐷. 3) 

𝑞𝑞𝐴𝐴|𝐵𝐵
(∗) =

𝑝𝑝𝐴𝐴𝐴𝐴
(∗)

𝑝𝑝𝐵𝐵
(𝐷𝐷. 4) 
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𝑞𝑞𝐴𝐴|𝐴𝐴
(∗) = 1 − 𝑞𝑞𝐵𝐵|𝐴𝐴

(∗) (𝐷𝐷. 5) 

𝑞𝑞𝐴𝐴|𝐴𝐴
(𝐺𝐺−𝑂𝑂) = 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝐺𝐺−𝑂𝑂) = 𝑝𝑝𝐴𝐴 (𝐷𝐷. 6) 

𝑞𝑞∗|∗
(𝑂𝑂) = 𝑞𝑞∗|∗

(𝑆𝑆) (𝐷𝐷. 7) 

The intuition behind equation (D.4) is that the prevalence of AB pairs in the vicinity of a B 

multiplied by the global prevalence of B is equal to the global prevalence of AB pairs—

multiplying 𝑞𝑞𝐴𝐴|𝐵𝐵
(∗)  by 𝑝𝑝𝐵𝐵 undoes the conditionality of the prevalence. As discussed in the main 

text, the last two identities are the consequence of the separation of the interaction (economic) 

and updating (social) layers. 

The probability that the number of A nodes increases in any given round is equal to the 

probability that a B node is chosen to update and becomes an A: 

𝑃𝑃 �∆𝑝𝑝𝐴𝐴 =
1
𝑁𝑁�

= 𝑝𝑝𝐵𝐵 �
𝑠𝑠!

𝑠𝑠𝐴𝐴! 𝑠𝑠𝐵𝐵!
𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑆𝑆) 𝑠𝑠𝐴𝐴𝑞𝑞𝐵𝐵|𝐵𝐵
(𝑆𝑆) 𝑠𝑠𝐵𝐵 𝑠𝑠𝐴𝐴𝑓𝑓𝐴𝐴

𝑠𝑠𝐴𝐴𝑓𝑓𝐴𝐴 + 𝑠𝑠𝐵𝐵𝑓𝑓𝐵𝐵

𝑠𝑠

𝑠𝑠𝐴𝐴=0

(𝐷𝐷. 8) 

where 𝑠𝑠𝐴𝐴 denotes the number of social neighbors of the updater with strategy A (so 𝑠𝑠𝐴𝐴 + 𝑠𝑠𝐵𝐵 = 𝑠𝑠), 

and 𝑓𝑓𝐴𝐴 denotes the expected fitness of an A. The intuition behind this expression is this: 𝑝𝑝𝐵𝐵 is the 

probability a B node is chosen to update; 𝑠𝑠!
𝑠𝑠𝐴𝐴!𝑠𝑠𝐵𝐵!

𝑞𝑞𝐴𝐴|𝐵𝐵
(𝑆𝑆) 𝑠𝑠𝐴𝐴𝑞𝑞𝐵𝐵|𝐵𝐵

(𝑆𝑆) 𝑠𝑠𝐵𝐵 is the probability of any given B 

node having 𝑠𝑠𝐴𝐴 social neighbors with strategy A; and 𝑠𝑠𝐴𝐴𝑓𝑓𝐴𝐴
𝑠𝑠𝐴𝐴𝑓𝑓𝐴𝐴+𝑠𝑠𝐵𝐵𝑓𝑓𝐵𝐵

 is the probability that one of the 

𝑠𝑠𝐴𝐴 social neighbors is chosen to be emulated. The sum is taken across these probabilities for all 

possible neighborhood configurations and their prevalence. Consequently, the probability that the 

number of social AA pairs increases by 𝑠𝑠𝐴𝐴 is given by 

𝑃𝑃 �∆𝑝𝑝𝐴𝐴𝐴𝐴
(𝑆𝑆) =

2𝑠𝑠𝐴𝐴
𝑠𝑠𝑠𝑠�

= 𝑝𝑝𝐵𝐵
𝑠𝑠!

𝑠𝑠𝐴𝐴! 𝑠𝑠𝐵𝐵!
𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑆𝑆) 𝑠𝑠𝐴𝐴𝑞𝑞𝐵𝐵|𝐵𝐵
(𝑆𝑆) 𝑠𝑠𝐵𝐵 𝑠𝑠𝐴𝐴𝑓𝑓𝐴𝐴

𝑠𝑠𝐴𝐴𝑓𝑓𝐴𝐴 + 𝑠𝑠𝐵𝐵𝑓𝑓𝐵𝐵
(𝐷𝐷. 9) 

since updating a B node with 𝑠𝑠𝐴𝐴 social neighbors with strategy A results in 𝑠𝑠𝐴𝐴 new AA pairs out 

of 𝑠𝑠𝑠𝑠/2 total social edges. 

 Now, let each round of each simulation be considered as one unit of time. Then, 
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𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑝𝑝𝐴𝐴) =
1
𝑁𝑁
∙ 𝑃𝑃 �∆𝑝𝑝𝐴𝐴 =

1
𝑁𝑁�

−
1
𝑁𝑁
∙ 𝑃𝑃 �∆𝑝𝑝𝐴𝐴 = −

1
𝑁𝑁�

(𝐷𝐷. 10) 

and 

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑝𝑝𝐴𝐴𝐴𝐴

(𝑆𝑆)� = �
2𝑠𝑠𝐴𝐴
𝑠𝑠𝑠𝑠

�𝑃𝑃 �∆𝑝𝑝𝐴𝐴𝐴𝐴
(𝑆𝑆) =

2𝑠𝑠𝐴𝐴
𝑠𝑠𝑠𝑠�

− 𝑃𝑃 �∆𝑝𝑝𝐴𝐴𝐴𝐴
(𝑆𝑆) = −

2𝑠𝑠𝐴𝐴
𝑠𝑠𝑠𝑠�

�
𝑠𝑠

𝑠𝑠𝐴𝐴=0

(𝐷𝐷. 11) 

In the case of weak selection (𝑤𝑤 ≪ 1), 𝑝𝑝𝐴𝐴𝐴𝐴
(𝑆𝑆) changes more quickly than 𝑝𝑝𝐴𝐴 since 

lim
𝑤𝑤→0

�
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑝𝑝𝐴𝐴)� = 0 (𝐷𝐷. 12) 

but 

lim
𝑤𝑤→0

�
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑝𝑝𝐴𝐴𝐴𝐴

(𝑆𝑆)�� =
2
𝑠𝑠𝑠𝑠

𝑝𝑝𝐴𝐴𝐴𝐴
(𝑆𝑆) �1 + (𝑠𝑠 − 1)�𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑆𝑆) − 𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆) �� > 0 (𝐷𝐷. 13) 

This is to say that when there is no selection occurring and therefore no differences in fitness, A 

nodes are just as likely to become B nodes as B nodes are to become A nodes, so the expected 

rate of change of the global prevalence of strategies is 0. But strategy updating even without 

selection still leads to a clustering of strategies in the social layer of the network since in any pair 

of social neighbors, one may have adopted its current strategy by emulating the other. A more 

detailed derivation of these equations can be found in the supplementary section of Ohtsuki et al. 

(2006). 

The intuition for equation (D.11) is this: The change in the prevalence of AA social pairs depends 

on the prevalence of AB social pairs, since both the creation and destruction of AA pairs relies on 

the existence of a B near an A (to create an AA, an AB pair must become an AA pair, and to 

destroy an AA pair, a B node must occur in the AA pair’s extended neighborhood to be 

emulated). Thus, the number of AA pairs changes only along the strategy boundaries marked by 

AB pairs. Now, consider a given AB pair. The neighborhood of the A includes on average 

(𝑠𝑠 − 1)𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆)  A nodes, and the neighborhood of the B includes on average 1 + (𝑠𝑠 − 1)𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑆𝑆)  A 

nodes. If the B updates and emulates an A, then, on average, 1 + (𝑠𝑠 − 1)𝑞𝑞𝐴𝐴|𝐵𝐵
(𝑆𝑆)  new AA pairs will 

be created, and if the A updates and emulates a B, then, on average, (𝑠𝑠 − 1)𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆)  AA pairs will be 
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lost. Thus, the rate of change of the number of AA pairs is proportionate to 1 + (𝑠𝑠 − 1)�𝑞𝑞𝐴𝐴|𝐵𝐵
(𝑆𝑆) −

𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆) �. 

Since 𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆) = 𝑝𝑝𝐴𝐴𝐴𝐴

(𝑆𝑆)/𝑝𝑝𝐴𝐴, we can also derive the time derivative for 𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆)  as strength of selection 

approaches zero: 

lim
𝑤𝑤→0

�
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑞𝑞𝐴𝐴|𝐴𝐴

(𝑆𝑆) �� =
2
𝑠𝑠𝑠𝑠

𝑝𝑝𝐴𝐴𝐴𝐴
(𝑆𝑆)

𝑝𝑝𝐴𝐴
�1 + (𝑠𝑠 − 1)�𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑆𝑆) − 𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆) �� (𝐷𝐷. 14) 

It is due to this difference in the rate of change of 𝑝𝑝𝐴𝐴 and 𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆)  that, in the case of weak selection, 

𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆)  equilibrates before 𝑝𝑝𝐴𝐴 does. The 𝑞𝑞𝐴𝐴|𝐴𝐴

(𝑆𝑆)  equilibrium, defined by 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑞𝑞𝐴𝐴|𝐴𝐴

(𝑆𝑆) � = 0, yields the 

following relationships (Ohtsuki et al., 2006): 

𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆) = 𝑝𝑝𝐴𝐴 +

1
𝑠𝑠 − 1

(1 − 𝑝𝑝𝐴𝐴) (𝐷𝐷. 15) 

𝑞𝑞𝐵𝐵|𝐴𝐴
(𝑆𝑆) = 1 − 𝑞𝑞𝐴𝐴|𝐴𝐴

(𝑆𝑆) = 1 − 𝑝𝑝𝐴𝐴 −
1

𝑠𝑠 − 1
(1 − 𝑝𝑝𝐴𝐴) = 𝑝𝑝𝐵𝐵 −

1
𝑠𝑠 − 1

𝑝𝑝𝐵𝐵 (𝐷𝐷. 16) 

𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆) − 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑆𝑆) = 𝑝𝑝𝐴𝐴 +
1

𝑠𝑠 − 1
(1 − 𝑝𝑝𝐴𝐴) − 𝑝𝑝𝐴𝐴 +

1
𝑠𝑠 − 1

𝑝𝑝𝐴𝐴 =
1

𝑠𝑠 − 1
(𝐷𝐷. 17) 

Thus far, I have followed the method of Ohtsuki et al. (2006, 2007). At this point, Ohtsuki and 

his coauthors estimate fixation probabilities and derive their analytical rules by comparing these 

formulas. In contrast, I derive the rules for the evolution of unconditional cooperation and 

empathy using a shortcut whereby I compare the expected payoff of the competing strategies at 

the local strategy density equilibrium. 

But why does this work? Consider the probability that an updater emulates an A or a B node: 

𝐸𝐸[Pr(𝑈𝑈 → 𝐴𝐴)] = 𝑝𝑝𝐴𝐴 �
𝑠𝑠 ∙ 𝑞𝑞𝐴𝐴|𝐴𝐴

(𝑆𝑆) ∙ 𝐸𝐸[𝑓𝑓𝐴𝐴]
∑ 𝑓𝑓𝑁𝑁𝑠𝑠(𝑈𝑈)

� + 𝑝𝑝𝐵𝐵 �
𝑠𝑠 ∙ 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑆𝑆) ∙ 𝐸𝐸[𝑓𝑓𝐴𝐴]
∑ 𝑓𝑓𝑁𝑁𝑠𝑠(𝑈𝑈)

�  (𝐷𝐷. 18) 

𝐸𝐸[Pr(𝑈𝑈 → 𝐵𝐵)] = 𝑝𝑝𝐴𝐴 �
𝑠𝑠 ∙ 𝑞𝑞𝐵𝐵|𝐴𝐴

(𝑆𝑆) ∙ 𝐸𝐸[𝑓𝑓𝐵𝐵]
∑ 𝑓𝑓𝑁𝑁𝑠𝑠(𝑈𝑈)

� + 𝑝𝑝𝐵𝐵 �
𝑠𝑠 ∙ 𝑞𝑞𝐵𝐵|𝐵𝐵

(𝑆𝑆) ∙ 𝐸𝐸[𝑓𝑓𝐵𝐵]
∑ 𝑓𝑓𝑁𝑁𝑠𝑠(𝑈𝑈)

� (𝐷𝐷. 19) 

so 
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𝐸𝐸[Pr(𝑈𝑈 → 𝐴𝐴)] > 𝐸𝐸[Pr(𝑈𝑈 → 𝐴𝐴)]

⟺ 𝑝𝑝𝐴𝐴 �
𝑠𝑠 ∙ 𝑞𝑞𝐴𝐴|𝐴𝐴

(𝑆𝑆) ∙ 𝐸𝐸[𝑓𝑓𝐴𝐴]
∑ 𝑓𝑓𝑁𝑁𝑠𝑠(𝑈𝑈)

� + 𝑝𝑝𝐵𝐵 �
𝑠𝑠 ∙ 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑆𝑆) ∙ 𝐸𝐸[𝑓𝑓𝐴𝐴]
∑ 𝑓𝑓𝑁𝑁𝑠𝑠(𝑈𝑈)

�

> 𝑝𝑝𝐴𝐴 �
𝑠𝑠 ∙ 𝑞𝑞𝐵𝐵|𝐴𝐴

(𝑆𝑆) ∙ 𝐸𝐸[𝑓𝑓𝐵𝐵]
∑ 𝑓𝑓𝑁𝑁𝑠𝑠(𝑈𝑈)

� + 𝑝𝑝𝐵𝐵 �
𝑠𝑠 ∙ 𝑞𝑞𝐵𝐵|𝐵𝐵

(𝑆𝑆) ∙ 𝐸𝐸[𝑓𝑓𝐵𝐵]
∑ 𝑓𝑓𝑁𝑁𝑠𝑠(𝑈𝑈)

�

⟺ 𝑝𝑝𝐴𝐴�𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑆𝑆) ∙ 𝐸𝐸[𝑓𝑓𝐴𝐴]� + 𝑝𝑝𝐵𝐵�𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑆𝑆) ∙ 𝐸𝐸[𝑓𝑓𝐴𝐴]� 

                > 𝑝𝑝𝐴𝐴�𝑞𝑞𝐵𝐵|𝐴𝐴
(𝑆𝑆) ∙ 𝐸𝐸[𝑓𝑓𝐵𝐵]� + 𝑝𝑝𝐵𝐵�𝑞𝑞𝐵𝐵|𝐵𝐵

(𝑆𝑆) ∙ 𝐸𝐸[𝑓𝑓𝐵𝐵]� (𝐷𝐷. 20) 

Using Equations D.15 and D.16, this inequality simplifies to 

𝑝𝑝𝐴𝐴 ∙ 𝐸𝐸[𝑓𝑓𝐴𝐴] > 𝑝𝑝𝐵𝐵 ∙ 𝐸𝐸[𝑓𝑓𝐵𝐵] (𝐷𝐷. 21) 

Now, recall that a trait is said to be selected for if it fares better than a neutral mutant. If A is a 

neutral mutant of B, then 𝐸𝐸[𝑓𝑓𝐴𝐴] = 𝐸𝐸[𝑓𝑓𝐵𝐵], in which case Inequality (D.21) simplifies to 

𝑝𝑝𝐴𝐴 > 𝑝𝑝𝐵𝐵 (𝐷𝐷. 22) 

Thus, strategy A fares better than a neutral mutant if 

𝑝𝑝𝐴𝐴 ∙ 𝐸𝐸[𝑓𝑓𝐴𝐴] − 𝑝𝑝𝐵𝐵 ∙ 𝐸𝐸[𝑓𝑓𝐵𝐵] > 𝑝𝑝𝐴𝐴 − 𝑝𝑝𝐵𝐵 (𝐷𝐷. 23) 

which is true when 

𝐸𝐸[𝑓𝑓𝐴𝐴] > 𝐸𝐸[𝑓𝑓𝐵𝐵] 

⟺ 𝐸𝐸[Π𝐴𝐴] > 𝐸𝐸[Π𝐵𝐵] (𝐷𝐷. 24) 

Interestingly, this rule is also arrived at by comparing 𝐸𝐸[Pr(𝑈𝑈 → 𝐴𝐴)] with 𝐸𝐸[Pr(𝑈𝑈 → 𝐵𝐵)] when 

the population is equally split between A and B (𝑝𝑝𝐴𝐴 = 𝑝𝑝𝐵𝐵)—or by switching to a deterministic 

updating rule based on the maximum payoff once the local strategy density equilibrium is 

reached. 

Now, to compare the expected payoffs of the two competing strategies, I compare their expected 

economic neighborhoods in the local strategy density equilibrium. In the non-social economic 

network (𝐺𝐺 − 𝑂𝑂), there is no difference in the expected neighborhoods (since assortment only 

arises on the social network). Therefore, the expected difference in economic neighborhood is 
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equal to the expected difference in the overlap neighborhood. Let 𝐴𝐴𝐴𝐴 be the number of A nodes 

in the overlap neighborhood of an A node and 𝐴𝐴𝐵𝐵 be the number of A nodes in the overlap 

neighborhood of a B node. To find 𝐸𝐸(𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐵𝐵) in the local strategy density equilibrium, we 

must consider eight scenarios arising from the strategy of the updater, U, and its position relative 

to the A and B nodes competing for emulation: 

1. U is an A player 

a. U is in the overlap neighborhood of both A and B (occurs with probability �𝑜𝑜
𝑠𝑠
�
2
) 

𝐸𝐸(𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐵𝐵) = (𝑜𝑜 − 1)�𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑂𝑂) − 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑂𝑂)� (𝐷𝐷. 25) 

b. U is in the overlap neighborhood of A but not B (𝑃𝑃𝑃𝑃 = 𝑜𝑜
𝑠𝑠
�1 − 𝑜𝑜

𝑠𝑠
�) 

𝐸𝐸(𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐵𝐵) = 1 + (𝑜𝑜 − 1)𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑂𝑂) − 𝑜𝑜𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑂𝑂)  (𝐷𝐷. 26) 

c. U is in the overlap neighborhood of B but not A (𝑃𝑃𝑃𝑃 = 𝑜𝑜
𝑠𝑠
�1 − 𝑜𝑜

𝑠𝑠
�) 

𝐸𝐸(𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐵𝐵) = 𝑜𝑜𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑂𝑂) − (𝑜𝑜 − 1)𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑂𝑂) − 1 (𝐷𝐷. 27) 

d. U is in the overlap neighborhood of both A and B (𝑃𝑃𝑃𝑃 = �1 − 𝑜𝑜
𝑠𝑠
�
2
) 

𝐸𝐸(𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐵𝐵) = 𝑜𝑜�𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑂𝑂) − 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑂𝑂)� (𝐷𝐷. 28) 

2. U is a B player 

a. U is in the overlap neighborhood of both A and B (𝑃𝑃𝑃𝑃 = �𝑜𝑜
𝑠𝑠
�
2
) 

𝐸𝐸(𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐵𝐵) = (𝑜𝑜 − 1)�𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑂𝑂) − 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑂𝑂)� (𝐷𝐷. 29) 

b. U is in the overlap neighborhood of A but not B (𝑃𝑃𝑃𝑃 = 𝑜𝑜
𝑠𝑠
�1 − 𝑜𝑜

𝑠𝑠
�) 

𝐸𝐸(𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐵𝐵) = (𝑜𝑜 − 1)𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑂𝑂) − 𝑜𝑜𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑂𝑂)  (𝐷𝐷. 30) 

c. U is in the overlap neighborhood of B but not A (𝑃𝑃𝑃𝑃 = 𝑜𝑜
𝑠𝑠
�1 − 𝑜𝑜

𝑠𝑠
�) 

𝐸𝐸(𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐵𝐵) = 𝑜𝑜𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑂𝑂) − (𝑜𝑜 − 1)𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑂𝑂)  (𝐷𝐷. 31) 

d. U is in the overlap neighborhood of both A and B (𝑃𝑃𝑃𝑃 = �1 − 𝑜𝑜
𝑠𝑠
�
2
) 

𝐸𝐸(𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐵𝐵) = 𝑜𝑜�𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑂𝑂) − 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑂𝑂)� (𝐷𝐷. 32) 
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Whether U is an A or a B player, the expected difference in the number of A nodes in the overlap 

neighborhoods is then 

𝐸𝐸(𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐵𝐵) = �
𝑜𝑜
𝑠𝑠
�
2

(𝑜𝑜 − 1)�𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑂𝑂) − 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑂𝑂)�

+
𝑜𝑜
𝑠𝑠
�1 −

𝑜𝑜
𝑠𝑠
� �(𝑜𝑜 − 1)𝑞𝑞𝐴𝐴|𝐴𝐴

(𝑂𝑂) − 𝑜𝑜𝑞𝑞𝐴𝐴|𝐵𝐵
(𝑂𝑂) + 𝑜𝑜𝑞𝑞𝐴𝐴|𝐴𝐴

(𝑂𝑂) − (𝑜𝑜 − 1)𝑞𝑞𝐴𝐴|𝐵𝐵
(𝑂𝑂)� 

+ �1 −
𝑜𝑜
𝑠𝑠
�
2
𝑜𝑜�𝑞𝑞𝐴𝐴|𝐴𝐴

(𝑂𝑂) − 𝑞𝑞𝐴𝐴|𝐵𝐵
(𝑂𝑂)�                                (𝐷𝐷. 33) 

Substituting in 𝑞𝑞𝐴𝐴|𝐴𝐴
(𝑂𝑂) − 𝑞𝑞𝐴𝐴|𝐵𝐵

(𝑂𝑂) = 1
𝑠𝑠−1

, this becomes 

𝐸𝐸(𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐵𝐵) = �
𝑜𝑜
𝑠𝑠
�
2 𝑜𝑜 − 1
𝑠𝑠 − 1

+
𝑜𝑜
𝑠𝑠
�1 −

𝑜𝑜
𝑠𝑠
� �

2𝑜𝑜
𝑠𝑠 − 1

− �𝑝𝑝𝐴𝐴 −
1

𝑠𝑠 − 1
(1 − 𝑝𝑝𝐴𝐴)� + 𝑝𝑝𝐴𝐴 −

1
𝑠𝑠 − 1

𝑝𝑝𝐴𝐴�

+ �1 −
𝑜𝑜
𝑠𝑠
�
2 𝑜𝑜
𝑠𝑠 − 1

 

=
𝑜𝑜
𝑠𝑠

                                                                                       (𝐷𝐷. 34) 

Lastly, note that if we separate the social layer (S) from a “cultural” trait transmission layer (L), 

the rule for the evolution of empathy becomes 𝑏𝑏
𝑐𝑐

> 𝑜𝑜𝑔𝑔𝑔𝑔∙𝑙𝑙
𝑜𝑜𝑔𝑔𝑔𝑔

, where 𝑜𝑜𝑔𝑔𝑔𝑔 is the social-economic overlap 

degree, l is the cultural degree, and 𝑜𝑜𝑔𝑔𝑔𝑔 is the cultural-economic overlap degree. As mentioned 

above, the multilayer network generation algorithm could be modified to generate a three-layer 

multilayer network on which such evolutionary game simulations could be run. 
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